19 research outputs found

    Effect of lurbinectedin on the QTc interval in patients with advanced solid tumors: an exposure–response analysis

    Get PDF
    Purpose: This study assessed the effect of lurbinectedin, a highly selective inhibitor of oncogenic transcription, on the change from baseline in Fridericia’s corrected QT interval (¿QTcF) and electrocardiography (ECG) morphological patterns, and lurbinectedin concentration–¿QTcF (C-¿QTcF) relationship, in patients with advanced solid tumors. Methods: Patients with QTcF = 500 ms, QRS < 110 ms, PR < 200 ms, and normal cardiac conduction and function received lurbinectedin 3.2 mg/m2 as a 1-h intravenous infusion every 3 weeks. ECGs were collected in triplicate via 12-lead digital recorder in treatment cycle 1 and 2 and analyzed centrally. ECG collection time-matched blood samples were drawn to measure lurbinectedin plasma concentration. No effect on QTc interval was concluded if the upper bound (UB) of the least square (LS) mean two-sided 90% confidence intervals (CI) for ¿QTcF at each time point was < 20 ms. C-¿QTcF was explored using linear mixed-effects analysis. Results: A total of 1707 ECGs were collected from 39 patients (females, 22; median age, 56 years). The largest UB of the 90% CI of ¿QTcF was 9.6 ms, thus lower than the more conservative 10 ms threshold established at the ICH E14 guideline for QT studies in healthy volunteers. C-¿QTcF was better fit by an effect compartment model, and the 90% CI of predicted ¿QTcF at Cmax was 7.81 ms, also below the 10 ms threshold of clinical concern. Conclusions: ECG parameters and C-¿QTcF modelling in this prospective study indicate that lurbinectedin was not associated with a clinically relevant effect on cardiac repolarization

    Preclinical and randomized phase I studies of plitidepsin in adults hospitalized with COVID-19

    Get PDF
    Plitidepsin, a marine-derived cyclic-peptide, inhibits SARS-CoV-2 replication at nanomolar concentrations by targeting the host protein eukaryotic translation elongation factor 1A. Here, we show that plitidepsin distributes preferentially to lung over plasma, with similar potency against across several SARS-CoV-2 variants in preclinical studies. Simultaneously, in this randomized, parallel, open-label, proof-of-concept study (NCT04382066) conducted in 10 Spanish hospitals between May and November 2020, 46 adult hospitalized patients with confirmed SARS-CoV-2 infection received either 1.5 mg (n = 15), 2.0 mg (n = 16), or 2.5 mg (n = 15) plitidepsin once daily for 3 d. The primary objective was safety; viral load kinetics, mortality, need for increased respiratory support, and dose selection were secondary end points. One patient withdrew consent before starting procedures; 45 initiated treatment; one withdrew because of hypersensitivity. Two Grade 3 treatment-related adverse events were observed (hypersensitivity and diarrhea). Treatment-related adverse events affecting more than 5% of patients were nausea (42.2%), vomiting (15.6%), and diarrhea (6.7%). Mean viral load reductions from baseline were 1.35, 2.35, 3.25, and 3.85 log10 at days 4, 7, 15, and 31. Nonmechanical invasive ventilation was required in 8 of 44 evaluable patients (16.0%); six patients required intensive care support (13.6%), and three patients (6.7%) died (COVID-19-related). Plitidepsin has a favorable safety profile in patients with COVID-19

    Pharmacokinetic drug interactions of antimicrobial drugs:a systematic review on oxazolidinones, rifamycines, macrolides, fluoroquinolones, and Beta-lactams

    Get PDF
    Like any other drug, antimicrobial drugs are prone to pharmacokinetic drug interactions. These drug interactions are a major concern in clinical practice as they may have an effect on efficacy and toxicity. This article provides an overview of all published pharmacokinetic studies on drug interactions of the commonly prescribed antimicrobial drugs oxazolidinones, rifamycines, macrolides, fluoroquinolones, and beta-lactams, focusing on systematic research. We describe drug-food and drug-drug interaction studies in humans, affecting antimicrobial drugs as well as concomitantly administered drugs. Since knowledge about mechanisms is of paramount importance for adequate management of drug interactions, the most plausible underlying mechanism of the drug interaction is provided when available. This overview can be used in daily practice to support the management of pharmacokinetic drug interactions of antimicrobial drugs

    Produzione di verbi e deficit fonologico in una paziente con afasia di Broca.

    No full text
    A patient with left anterior lesion, probable Broca's aphasia, is required to generate the Italian past participle of real and fake verbs. The results are discussed in light of the two mechanism model and the model by Bird et al., (2003) and suggest an impairment in the processing of complex phonological forms

    Phonological and working memory mechanisms involved in written spelling.

    No full text
    Recent theories of spelling based on neuropsychological data and on computational modelling (Caramazza & Miceli, 1990; Caramazza, Miceli, Villa, & Romani, 1987;Glasspool & Houghton, 2005; Glasspool, Shallice, & Cipolotti, 2006; Miceli & Capasso, 2006; Rapp & Kong, 2002) assume that a working memory system is used to store identity and order of the graphemes, and propose that an impairment of this system, called Graphemic Buffer (GB), is marked by the presence of a number of typical effects. Recently, this disorder has been simulated by different versions of the Competitive Queuing model (Glasspool & Houghton, 2005; Glasspool et al., 2006). The effect of the disruption of this mechanism in written spelling was investigated by means of a dual task in the present study. Three-syllable and four- syllable words were presented to normal adults for aural presentation (Experiment 1) and spelling by copying (Experiment 2). In order to investigate the effects of dual tasks, and the possible involvement of phonological codes, three conditions were used: simple dictation, concurrent articulation, and foot tapping. The results showed strong effects of concurrent articulation, and were consistent with the hypothesis that this task disrupted the serial operations of readout and sequential planning of the GB. They were also consistent with the simulations of the Competitive Queuing model, suggesting possible loci of the effects

    Development and validation of a liquid chromatography-tandem mass spectrometry assay for the quantification of lurbinectedin in human plasma and urine

    No full text
    Lurbinectedin is a novel highly selective inhibitor of RNA polymerase II triggering caspase-dependent apoptosis of cancerous cells. This article describes the development and validation of a liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay to quantify lurbinectedin in human plasma and urine. Plasma samples were pre-treated with 1 M aqueous ammonia after which they were brought onto supported liquid extraction (SLE) columns. Lurbinectedin was eluted from the columns using tert-butyl methyl ether (TBME). Urine was first diluted in plasma and lurbinectedin was extracted from this matrix by liquid-liquid extraction using TBME. Samples were measured by LC-MS/MS in the positive electron ion spray mode. The method was linear over 0.1-100 ng/mL and 1-1000 ng/mL in plasma and urine, respectively, with accuracies and precisions within ±15% (20% for LLOQ) and below 15% (20% for LLOQ), respectively. The method was developed to support a mass balance study in which patients received a dose of 5 mg lurbinectedin

    Liquid chromatography-tandem mass spectrometry assay to quantify plitidepsin in human plasma, whole blood and urine

    No full text
    Plitidepsin is an anti-cancer drug currently evaluated in phase I/II/III clinical trials. This article describes the development and validation of a bioanalytical assay to quantify plitidepsin in human plasma, urine and whole blood using HPLC-MS/MS. The analyte was extracted from the matrix by liquid-liquid extraction using tert-butyl methyl ether. Final extracts were injected onto a C18 column, gradient elution was applied for chromatographic separation and detection was performed on a triple quadrupole mass spectrometer operating in the positive ion mode. The assay was linear over the range 0.1-100ng/mL, with acceptable accuracy and precision values. This is the first reported bioanalytical assay quantifying plitidepsin using a stable isotopically labelled standard, achieving a lower limit of quantification of 0.1ng/mL in all three matrices, allowing the quantification of trace levels of plitidepsin, and accomplishing this in an analysis time of two minutes only. The presented method was successfully applied in a mass balance study with plitidepsin in patients with advanced cancer

    Pharmacokinetics and excretion of 14C–Plitidepsin in patients with advanced cancer

    No full text
    Summary: Plitidepsin (Aplidin®) is a marine-derived anticancer compound currently investigated in phase III clinical trials. This article describes the distribution, metabolism and excretion of this novel agent and it mainly aims to identify the major routes of elimination. Six subjects were enrolled in a mass balance study during which radiolabelled plitidepsin was administered as a 3-h intravenous infusion. Blood samples were taken and urine and faeces were collected. Total radioactivity (TRA) analysis using Liquid Scintillation Counting (LSC) was done to determine the amount of radioactivity excreted from the body and plitidepsin concentrations in whole blood, plasma and urine were determined by validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) assays. In total, a mean of 77.4% of the administered radioactivity was excreted over a time period of 20 days, of which 71.3% was recovered in faeces and 6.1% was found in urine. The majority excreted in urine was accounted for by unchanged plitidepsin, with only 1.5% of the total administered dose explained by metabolites in urine. Faeces, on the other hand contained low levels of parent compound, which means that most of the TRA excreted in faeces was accounted for by metabolites. TRA levels were 3.7 times higher in whole blood compared to plasma. Plitidepsin was widely distributed and plasma clearance was low. This study shows that red blood cells are a major distribution compartment and that the biliary route is the main route of total radioactivity excretion

    Development and validation of a liquid chromatography-tandem mass spectrometry assay for the quantification of lurbinectedin in human plasma and urine

    No full text
    Lurbinectedin is a novel highly selective inhibitor of RNA polymerase II triggering caspase-dependent apoptosis of cancerous cells. This article describes the development and validation of a liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay to quantify lurbinectedin in human plasma and urine. Plasma samples were pre-treated with 1 M aqueous ammonia after which they were brought onto supported liquid extraction (SLE) columns. Lurbinectedin was eluted from the columns using tert-butyl methyl ether (TBME). Urine was first diluted in plasma and lurbinectedin was extracted from this matrix by liquid-liquid extraction using TBME. Samples were measured by LC-MS/MS in the positive electron ion spray mode. The method was linear over 0.1-100 ng/mL and 1-1000 ng/mL in plasma and urine, respectively, with accuracies and precisions within ±15% (20% for LLOQ) and below 15% (20% for LLOQ), respectively. The method was developed to support a mass balance study in which patients received a dose of 5 mg lurbinectedin
    corecore