2,490 research outputs found

    Duplications of the critical Rubinstein-Taybi deletion region on chromosome 16p13.3 cause a novel recognisable syndrome

    Get PDF
    Background The introduction of molecular karyotyping technologies facilitated the identification of specific genetic disorders associated with imbalances of certain genomic regions. A detailed phenotypic delineation of interstitial 16p13.3 duplications is hampered by the scarcity of such patients. Objectives To delineate the phenotypic spectrum associated with interstitial 16p13.3 duplications, and perform a genotype-phenotype analysis. Results The present report describes the genotypic and phenotypic delineation of nine submicroscopic interstitial 16p13.3 duplications. The critically duplicated region encompasses a single gene, CREBBP, which is mutated or deleted in Rubinstein-Taybi syndrome. In 10 out of the 12 hitherto described probands, the duplication arose de novo. Conclusions Interstitial 16p13.3 duplications have a recognizable phenotype, characterized by normal to moderately retarded mental development, normal growth, mild arthrogryposis, frequently small and proximally implanted thumbs and characteristic facial features. Occasionally, developmental defects of the heart, genitalia, palate or the eyes are observed. The frequent de novo occurrence of 16p13.3 duplications demonstrates the reduced reproductive fitness associated with this genotype. Inheritance of the duplication from a clinically normal parent in two cases indicates that the associated phenotype is incompletely penetrant

    Baraitser-Winter cerebrofrontofacial syndrome

    Get PDF
    Baraitser-Winter Cerebrofrontofacial syndrome (BWCFF) [BRWS; MIM #243310, 614583] is a rare developmental disorder affecting multiple organ systems. It is characterised by intellectual disability (mild to severe) and distinctive facial appearance (metopic ridging/trigonocephaly, bilateral ptosis, hypertelorism). The additional presence of cortical malformations (pachygyria/lissencephaly) and ocular colobomata are also suggestive of this syndrome. Other features include moderate short stature, contractures, congenital cardiac disease and genitourinary malformations. BWCFF is caused by missense mutations in the cytoplasmic beta- and gamma-actin genes ACTB and ACTG1. We provide an overview of the clinical characteristics (including some novel findings in four recently diagnosed patients), diagnosis, management, mutation spectrum and genetic counselling

    PTPN11 mutations are not responsible for the Cardiofaciocutaneous (CFC) syndrome

    Get PDF
    Cardiofaciocutaneous (CFC) syndrome is a multiple congenital anomalies/mental retardation syndrome characterized by congenital heart defects, characteristic facial appearance, short stature, ectodermal abnormalities and mental retardation. It was described in 1986, and to date is of unknown genetic etiology. All reported cases are sporadic, born to non-consanguineous parents and have apparently normal chromosomes. Noonan and Costello syndromes remain its main differential diagnosis. the recent finding of PTPN11 missense mutations in 45-50% of the Noonan patients studied with penetrance of almost 100% and the fact that in animals mutations of this gene cause defects of semilunar valvulogenesis, made PTPN11 mutation screening in CFC patients a matter of interest. We sequenced the entire coding region of the PTPN11 gene in ten well-characterised CFC patients and found no base changes. We also studied PTPN11 cDNA in our patients and demonstrated that there are no interstitial deletions either. the genetic cause of CFC syndrome remains unknown, and PTPN11 can be reasonably excluded as a candidate gene for the CFC syndrome, which we regard as molecular evidence that CFC and Noonan syndromes are distinct genetic entities.Univ Sacred Heart, Ist Genet Med, I-00168 Rome, ItalyUniversidade Federal de São Paulo, Escola Paulista Med, Ctr Med Genet, São Paulo, BrazilUniversidade Federal de São Paulo, Escola Paulista Med, Dept Dermatol, São Paulo, BrazilUniversidade Federal de São Paulo, Escola Paulista Med, Ctr Med Genet, São Paulo, BrazilUniversidade Federal de São Paulo, Escola Paulista Med, Dept Dermatol, São Paulo, BrazilWeb of Scienc

    Lujan-Fryns syndrome (mental retardation, X-linked, marfanoid habitus)

    Get PDF
    The Lujan-Fryns syndrome or X-linked mental retardation with marfanoid habitus syndrome is a syndromal X-linked form of mental retardation, affecting predominantly males. The prevalence is not known for the general population. The syndrome is associated with mild to moderate mental retardation, distinct facial dysmorphism (long narrow face, maxillary hypoplasia, small mandible and prominent forehead), tall marfanoid stature and long slender extremities, and behavioural problems. The genetic defect is not known. The diagnosis is based on the presence of the clinical manifestations. Genetic counselling is according to X-linked recessive inheritance. Prenatal testing is not possible. There is no specific treatment for this condition. Patients need special education and psychological follow-up, and attention should be given to diagnose early psychiatric disorders

    A distinctive gene expression fingerprint in mentally retarded male patients reflects disease-causing defects in the histone demethylase KDM5C

    Get PDF
    Background: Mental retardation is a genetically heterogeneous disorder, as more than 90 genes for this disorder has been found on the X chromosome alone. In addition the majority of patients are non-syndromic in that they do not present with clinically recognisable features. This makes it difficult to determine the molecular cause of this disorder on the basis of the phenotype alone. Mutations in KDM5C (previously named SMCX or JARID1C), a gene that encodes a transcriptional regulator with histone demethylase activity specific for dimethylated and trimethylated H3K4, are a comparatively frequent cause of non-syndromic X-linked mental retardation (NS-XLMR). Specific transcriptional targets of KDM5C, however, are still unknown and the effects of KDM5C deficiency on gene expression have not yet been investigated. Results: By whole-mount in situ hybridisation we showed that the mouse homologue of KDM5C is expressed in multiple tissues during mouse development. We present the results of gene expression profiling performed on lymphoblastoid cell lines as well as blood from patients with mutations in KDM5C. Using whole genome expression arrays and quantitative reverse transcriptase polymerase chain reaction (QRT-PCR) experiments, we identified several genes, including CMKOR1, KDM5B and KIAA0469 that were consistently deregulated in both tissues. Conclusions: Our findings shed light on the pathological mechanisms underlying mental retardation and have implications for future diagnostics of this heterogeneous disorder

    Piecing together the problems in diagnosing low-level chromosomal mosaicism

    Get PDF
    Low-level somatic chromosomal mosaicism, which usually arises from post-zygotic errors, is a known cause of several well defined genetic syndromes and has been implicated in various multifactorial diseases. It is, however, not easy to diagnose, as various physical and technical factors complicate its identification

    Niederländischunterricht in Ostbelgien

    Get PDF

    A case of intercommunity lethal aggression by chimpanzees in an open and dry landscape, Issa Valley, western Tanzania

    Get PDF
    Intercommunity (lethal) aggression is a familiar component of the behavioural repertoire of many forest-dwelling chimpanzee (Pan troglodytes) communities. However, until now, the absence of intercommunity attacks - including killings - in communities that live in open, mosaic environments has supported hypotheses of reduced resource competition in drier habitats, and informed referential models of early hominin social dynamics in a similar habitat. In June 2020, we observed the first instance of intercommunity lethal aggression, a male-committed infanticide, by the Issa chimpanzee community, which live in a savannah-mosaic habitat in the Issa Valley, western Tanzania. The carcass was recovered by researchers after it was abandoned by the attackers. Here, we give a detailed account of the events leading up to and including the infanticide, and contextualise our observations with what has been described for other chimpanzee communities. Notably, in contrast to the majority of reported intercommunity infanticides, the infant male victim was castrated (and not cannibalised), making this the youngest reported castration. This observation of intercommunity aggression disproves its hypothesised absence in savannah-dwelling chimpanzees, which by extension, has implications for early hominin evolution. We suggest that the near absence of observations of intercommunity aggression in savannah chimpanzee communities is most likely due to the lack of long-term study communities, and in some cases geographic isolation. We hypothesise that food-rich areas within a habitat with otherwise widely distributed food sources may select for intense intercommunity aggression despite the low population density characteristic of savannah communities. Anecdotes such as this add to the comparative database available on intercommunity killings in chimpanzee society, improving our ability to draw inferences about their evolutionary significance

    X-exome sequencing of 405 unresolved families identifies seven novel intellectual disability genes

    Get PDF
    X-linked intellectual disability (XLID) is a clinically and genetically heterogeneous disorder. During the past two decades in excess of 100 X-chromosome ID genes have been identified. Yet, a large number of families mapping to the X-chromosome remained unresolved suggesting that more XLID genes or loci are yet to be identified. Here, we have investigated 405 unresolved families with XLID. We employed massively parallel sequencing of all X-chromosome exons in the index males. The majority of these males were previously tested negative for copy number variations and for mutations in a subset of known XLID genes by Sanger sequencing. In total, 745 X-chromosomal genes were screened. After stringent filtering, a total of 1297 non-recurrent exonic variants remained for prioritization. Co-segregation analysis of potential clinically relevant changes revealed that 80 families (20%) carried pathogenic variants in established XLID genes. In 19 families, we detected likely causative protein truncating and missense variants in 7 novel and validated XLID genes (CLCN4, CNKSR2, FRMPD4, KLHL15, LAS1L, RLIM and USP27X) and potentially deleterious variants in 2 novel candidate XLID genes (CDK16 and TAF1). We show that the CLCN4 and CNKSR2 variants impair protein functions as indicated by electrophysiological studies and altered differentiation of cultured primary neurons from Clcn4−/− mice or after mRNA knock-down. The newly identified and candidate XLID proteins belong to pathways and networks with established roles in cognitive function and intellectual disability in particular. We suggest that systematic sequencing of all X-chromosomal genes in a cohort of patients with genetic evidence for X-chromosome locus involvement may resolve up to 58% of Fragile X-negative cases
    corecore