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Abstract 

 

Baraitser-Winter Cerebrofrontofacial syndrome (BWCFF) [BRWS; MIM #243310, 

614583] is a rare developmental disorder affecting multiple organ systems. It is 

characterised by intellectual disability (mild to severe) and distinctive facial 

appearance (metopic ridging/trigonocephaly, bilateral ptosis, hypertelorism). The 

additional presence of cortical malformations (pachygyria/lissencephaly) and ocular 

colobomata are also suggestive of this syndrome. Other features include moderate 

short stature, contractures, congenital cardiac disease and genitourinary 

malformations. BWCFF is caused by missense mutations in the cytoplasmic beta- 

and gamma-actin genes ACTB and ACTG1. We provide an overview of the clinical 

characteristics (including some novel findings in four recently diagnosed patients), 

diagnosis, management, mutation spectrum and genetic counselling.  
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Introduction 

 

The Baraitser-Winter syndrome [BRWS; MIM #243310, 614583] was first described in 

19881. It is a rare, autosomal dominant, developmental disorder. The main features 

include a distinctive facial appearance (metopic ridging/trigonocephaly, bilateral 

ptosis, hypertelorism), intellectual disability and structural brain abnormalities, 

predominantly pachygyria. Causative missense mutations in the ACTB [MIM 

102630] and ACTG1 [MIM 102560] genes were identified in 20122. Two other 

disorders, Fryns-Aftimos syndrome [MIM #243310]3 and Cerebrofrontofacial 

syndromes types 1 and 3 [MIM #243310]4 were previously thought to be separate 

clinical entities. It has now been demonstrated that they are also caused by ACTB & 

ACTG1 mutations, and Baraitser-Winter Cerebrofrontofacial syndrome (BWCFF) has 

been put forward as a unifying name5. More recently, fetal cases with 

microlissencephaly have been described, further extending the phenotypic 

spectrum6. Here we report the first instance of parent-child transmission, review the 

phenotypic and molecular characteristics of the approximately sixty cases published 

to date, illustrating key points with two additional patients. We discuss diagnosis, 

management, mutation spectrum and genetic counselling.  
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Clinical overview 

 

Craniofacial characteristics 

 

Individuals with BWCFF have a characteristic craniofacial appearance (Table 1), but 

there is a wide spectrum in severity. Hypertelorism, which may be significant7, and 

congenital non-myopathic ptosis is present in almost all cases. The eyebrows are 

often arched, which can increase with age. This may be partly due to an effort to 

raise the eyelids, although it is also seen in the absence of ptosis. The palpebral 

fissures are usually long and may be downslanting7-8. Epicanthic folds can be 

present1,9. Partial absence of the upper eyelashes has been reported8,10.  

 

Trigonocephaly or metopic ridging, associated with premature closure of the 

metopic suture, is common. A recently diagnosed female with a novel mutation had 

sagittal craniosynostosis, not previously reported, which required surgical correction 

(Fig. 1a, Patient 2). There is a round, flattened appearance to the face in infants. A 

progressive coarsening of facial features develops with age. The nose is usually short 

with a broad nasal bridge, anteverted nares and depressed nasal tip. A long 

philtrum, thin vermillion border and macrostomia are common5. Micro- or 

retrognathia may be present6,10. The palate is usually high arched.  Cleft lip and 

palate are seen in some patients. The ears are often posteriorly rotated, small and 

dysplastic5.  

This article is protected by copyright. All rights reserved.
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Ocular features 

 

Uni – or bilateral colobomata are present in about one third of patients, affecting the 

iris or retina2,5-6. Eyelid colobomata have been reported8. Microphthalmia is seen, but 

is uncommon5,9. There have been some reports of cataracts, myopia and 

strabismus8,11-12. A recently diagnosed male with a novel mutation presented with a 

unilateral congenital glaucoma, not previously reported in BWCFF (Fig. 1b, Patient 

4). 

 

Hearing  

 

Hearing loss is present in some cases, usually sensorineural, and can be 

progressive2,11,13.  

 

Growth and musculoskeletal manifestations 

 

Mild to moderate short stature in adulthood is common2,5. The neck is often short 

and may be webbed. Pterygia may affect one or more of the axillae, elbows and 

popliteal regions7-8. Pectus deformities are common and the nipples are often wide 
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spaced, hypoplastic and may be inverted. The shoulder muscle bulk may be reduced 

to a variable extent. Many patients develop an unusual posture with anteverted 

shoulders, flexed elbows and knees5. Camptodactyly and clinodactyly are rarer 

features3,10-11. The hallux may be broad and, uncommonly, duplex5,7. Talipes 

equinovarus is seen infrequently5.   

 

Neurology 

 

Cortical brain malformations have been reported in 60-70% of patients, and are most 

consistently seen in those with an ACTG1 mutation5. Pachygyria, frontal or 

perisylvian, is most common (Fig. 2)5-6 (personal observation). Lissencephaly with 

diffuse agyria has also been reported6,9. A few have periventricular nodules.  The 

corpus callosum often appears short and thick or may be hypoplastic or absent. 

Prominent perivascular spaces are common (Fig. 2a & b). Infratentorial structures 

are usually normal5. However, recently a fetus with an ACTG1 mutation, 

microlissencephaly and underdeveloped brain stem and cerebellum has been 

reported6. 

 

Microcephaly can be a feature. This is mostly mild with postnatal onset. However, 

Poirier et al6 reported two fetal cases with ACTG1 mutations and severe 

microcephaly, associated with lissencephaly/agyria. They described a third patient 

This article is protected by copyright. All rights reserved.
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with features of BWCFF, who presented with microcephaly and perisylvian 

pachygyria, who also had an ACTG1 mutation. The case of diffuse agyria previously 

described by Ramer et al9 with an ACTB mutation2, also had significant 

microcephaly.  

 

Developmental delay and learning difficulties are present in the vast majority of 

patients. Mild to moderate developmental delay may be found to a variable extent in 

those with no structural brain anomalies. Pachygyria and other structural cerebral 

changes are associated with mild to profound intellectual disability (ID), usually in 

keeping with the severity of the cortical malformation2,5,7.  

 

Epilepsy has so far only been seen in association with a structural brain anomaly and 

age of onset is very variable. The seizure disorder may be refractory to treatment. 

Other neurological features include generalised hypotonia or spasticity of the lower 

limbs2,5,7. 

 

Gearing et al.14 reported monozygotic twins with severe, progressive dystonia from 

the age of twelve years, with a unique p.Arg183Trp ACTB mutation. This has not 

been found in any other cases, and it remains to be seen whether this is a feature 

specific to this family.  
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Cardiovascular 

 

Congenital cardiac disease is a feature in around one third of patients. A patent 

ductus arteriosus is the most frequent finding. Ventricular or atrial septal defects 

have been reported7,10,13 and rarely bicuspid aortic valve and aortic stenosis9, mitral 

valve regurgitation5 and tricuspid regurgitation10. 

 

Genitourinary 

 

Genitourinary tract abnormalities include hydronephrosis, which is mostly 

bilateral5,10. Ectopic kidneys may also be a feature5. Renal duplication is found more 

rarely10,13. Undescended testes have been reported9,13.  

 

Gastrointestinal  

 

Umbilical hernias are relatively common, inguinal hernias less so8,13. Achalasia and 

bulbar palsy requiring gastrostomies were present in the twins reported by Gearing 

et al14. However as previously noted, these features may be unique to this family.  
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Antenatal 

 

Pregnancy is usually uneventful with normal growth. Two cases had hydrops fetalis 

with marked polyhydramnios7. Of note, these patients also had a more severe 

craniofacial phenotype.  

 

Malignancy  

 

Only two previously reported BWCFF patients have presented with haematological 

malignancies2,5. One of them, with an ACTB mutation, developed a precursor B-cell 

acute lymphatic leukaemia (ALL) at the age of eight years. The other, with an 

ACTG1 mutation, developed a cutaneous lymphoma at the age of nineteen years.  

 

Mutation spectrum & genotype-phenotype correlation 

 

Baraitser-Winter Cerebrofrontofacial syndrome is caused by heterozygous missense 

mutations in ACTB (Chr 7p22.1) and ACTG1 (Chr 17q25.3), which demonstrate 

clustering (Fig. 3) suggesting gain-of-function, but a dominant negative effect is also 

a possible mechanism2,15. This is supported by the observation that no similar 

phenotype has been found with deletions or duplications of these genes2. ACTB 

mutations predominate so far. It is notable that amino acid 196 is most often affected, 
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with sixteen recurrent cases thus far (p.Arg196His, p.Arg196Cys) 5, (and unpublished 

data). There is clinical heterogeneity amongst this group, even in those with the 

same mutation, suggesting the involvement of modifier genes5.  

 

ACTB and ACTG1 have a highly similar structure16, and it could therefore be 

surmised that mutations in either would have similar phenotypic effects. However, a 

single case with an ACTG1 mutation (p.Thr120Ile) demonstrated a milder 

craniofacial phenotype than several with an analogous ACTB variant2,7. Therefore, it 

has been suggested that ACTB mutations result in a more severe phenotype2,7. Our 

observations indicate that a severe craniofacial phenotype has so far been associated 

with ACTB variants, whereas ACTG1 mutation carriers are more likely, although not 

consistently17, to have a cortical brain malformation, hence also more severe 

intellectual disability and/or epilepsy. Indeed, the two fetuses described by Poirier et 

al.6 with microlissencephaly and facial features of BWCFF had novel mutations in 

ACTG1 (p.Ile75Leu & p.Pro343Ile). However, it should be noted that parental studies 

could not be undertaken in these cases, and therefore it could not be proven that the 

mutations were de novo. An analogous ACTB p.Ile75Thr mutation has been 

described5. Unfortunately, the patient was lost to follow-up, but was not thought to 

have comparable severe cerebral anomalies. In the same publication Poirier at al also 

reported a nine year old male with BWCFF and an ACTG1 mutation (p.Met153Ile), 

who had pachygyria. It should be noted that a case of agyria has also been 

documented with an ACTB mutation (p.Leu65Val)2,9. 

This article is protected by copyright. All rights reserved.
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Overall, it appears that ACTB mutations can be associated with a more severe 

craniofacial phenotype, whereas those in ACTG1 are more likely to result in 

significant brain structural abnormalities. However, given the small number of cases 

involved, it is not yet possible to definitively determine the differences in phenotype 

based on the gene affected. The phenotypic spectrum is likely to broaden with an 

increasing number of affected individuals being identified.  

 

Genetic and molecular basis 

 

Actin has six different protein isoforms: αskeletal-actin, αcardiac-actin, αsmooth-actin, and 

γsmooth-actin are expressed only in muscle cells. The cytoplasmic actin genes, ACTB 

(βcyto-actin) and ACTG1 (γcyto-actin), however, are ubiquitously expressed in 

vertebrates. These two isoforms share an almost identical structure, differing by only 

four amino acids16. Actins polymerise in vivo (F-actins), and these polymers play a 

number of crucial roles in the cellular cytoskeleton, for example maintenance of cell 

shape and mediation of cell-cell signalling. The ability of actin to rapidly polymerise 

and depolymerise allows for an adaptable and constantly changing cytoskeletal 

structure to regulate the intracellular environment and interactions with other cells18. 

There is some redundancy between cyto-actin isoforms, which may be expected, 

given the similarity of protein sequence, and they can easily co-polymerise19. For 
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example, Actg1-null mice fibroblasts show no reduction in overall actin levels due to 

increased levels of other isoforms, including βcyto-actin20.  

 

However, βcyto-actin and γcyto-actin have differential intracellular localisation 

patterns21, as well as being highly conserved across mammal and bird species, 

suggesting non-redundant roles. Actb-null mice do not survive to birth22. Loss of 

Actb exclusively in neurons results in abnormal cortical folding in the cerebellum 

and hippocampus, as well as partial agenesis of the corpus callosum23. Expression of 

Actb can also vary in a tissue-specific manner, i.e. miRNA-mediated regulation of 

translation via an alternative transcript affecting the 3’ UTR increases expression in 

neuronal cells24. In addition, post-translational modification by arginylation of βcyto-

actin aids cellular movement and increases actin polymerisation26. 

 

Actg1-null mice, in contrast, are viable, albeit with reduced survival in the 

immediate post-natal period26. Specific knockout of Actg1 in skeletal muscle results 

in progressive myopathy and muscle cell death in mice27. Actg1 regulation also 

differs: arginylated  γcyto-actin is marked for ubiquitin-mediated degradation28. 

Adjustment of Actg1 levels can additionally be achieved by nonsense-mediated 

decay through production of an alternative transcript including a premature 

termination codon29.  
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There is some evidence of tissue-specific cyto-actin functions, with relevance to the 

pathogenesis of BWCFF. Actin polymers play an important role in brain 

development. The actin cytoskeleton contributes to axonal growth via myosin 

interactions. It also acts as a guidance mechanism for the developing axon mediated 

by actin-binding proteins responding to chemical cues in the external environment30.  

As well as cytoplasmic functions, actin can regulate gene expression in neurons, 

controlling neurite outgrowth31. This appears to be mediated through the serum 

response factor (SRF) pathway.  

 

In auditory development, cyto-actin is required for stereocilia hair cell development 

in the ear in mice, but only one isoform needs to be present. However, loss of either 

Actb or Actg1 results in distinct types of progressive hearing loss over time32. Of note, 

familial sensorineural hearing loss with no other systemic features has been 

associated with mutations in ACTG1 (DFNA 20/26- MIM #604717). These are 

missense mutations, but are non-overlapping with those found in BWCFF33-34. 

Recurrent somatic mutations in ACTB have been found in large B-cell lymphoma35, 

and a somatic mutation has been shown in a gastric adenocarcinoma36. γcyto-actin is 

upregulated in sporadic lung and colon carcinomas, with an associated increase in 

invasiveness of the cancer cells37. Actin polymers (F-actin) can increase the 

transcriptional activity of the transcriptional co-activator β-catenin, known to be 

dysregulated in many cancers38.  

This article is protected by copyright. All rights reserved.
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Diagnosis and counselling 

 

A diagnosis of Baraitser-Winter syndrome should be considered in patients 

presenting with characteristic dysmorphism (metopic ridging/trigonocephaly, 

arched eyebrows, hypertelorism, congenital ptosis, short nose) together with 

intellectual disability of varying severity. Other suggestive findings include ocular 

coloboma and pachygyria. The age of presentation needs to be taken into account, as 

facial appearance changes significantly over time.  

 

Differential diagnoses may include Noonan syndrome [MIM # 163950], which shares 

some facial similarities, as well as pectus abnormalities and neck webbing. 

Coloboma is very rare in Noonan syndrome and it is not normally associated with 

cortical brain malformations.  The long palpebral fissures may be reminiscent of 

Kabuki syndrome [MIM #147920; MIM #300867]. Similarities may be found with 

other syndromes associated with hypertelorism (Teebi hypertelorism syndrome 

[MIM #145420], Aarskog syndrome [MIM #305400]) and at the extreme end, 

conditions with frontonasal dysplasia. Ptosis and pterygia overlap with features seen 

in Escobar syndrome [MIM #265000]. 
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Molecular diagnosis is made by sequencing of the ACTB and/or ACTG1 genes. This 

may be a single gene approach, or as part of NGS based targeted or whole exome 

sequencing. Mutations are usually de novo, however, in this review we report for 

the first time a parent with BWCFF and an affected child (Fig 1a, Patient 1, and 2a 

and 2b; detailed clinical data will be presented elsewhere).  

 

Several patients with a presentation suggestive for BWCFF syndrome with no 

ACTB/ACTG1 variants have been identified5, therefore there may be further 

molecular heterogeneity.    

 

As BWCFF is usually associated with de novo mutations, the recurrence risk for 

siblings is low. Prenatal testing can be offered for known variants.  

 

Investigations, management and surveillance 

 

Suggested investigations in a patient with probable or definite BWCFF should 

include: formal ophthalmological examination, audiometry, echocardiogram, and 

renal ultrasound scanning. Brain MRI should be considered in the presence of 

moderate to severe intellectual disability and/or seizure disorder. In patients with 

mild intellectual disability and without epilepsy, cerebral neuroimaging can be 

considered on a case by case basis. In cases of significant trigonocephaly, 
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hypertelorism, or premature fusion of other cranial sutures, referral to a craniofacial 

surgery department is indicated.    

 

Surveillance of psychomotor development and cognitive function will be required in 

all patients. The possible occurrence of a hearing impairment and its progression 

will need to be monitored.  Some patients will need surgical correction of their 

ptosis, and those with coloboma or microphthalmia will need screening for 

glaucoma as this can be a long term complication39. Treatment may be required for 

congenital cardiac disease, renal tract malformations and epilepsy. Cleft lip and 

palate will require surgical repair.  

 

So far, the occurrence of malignancy in BWCFF appears to be rare, and it is yet to be 

determined whether this condition is associated with a predisposition to cancer. 

Therefore, screening is currently not recommended.  

 

Conclusion 

 

BWCFF is becoming a defined clinical entity, however with a wider spectrum of 

severity than previously thought, with milder and more severe phenotypes having 

being identified. Typical craniofacial features are crucial in diagnosis, whereas 

pachygyria/lissencephaly and colobomata are important, but not consistent, clues 

(Table 1). There are also a number of features unique to individual patients, and it 
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remains to be determined whether these form part of the syndrome. Future 

challenges lie in understanding the functional consequences of the underlying actin 

mutations and the resulting phenotype. Given the ubiquitous expression of 

cytoplasmic actins, this will be a complex task.  
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Figure legends 

 

 

 

Figure 1a. BWCFF mother (2a&b; ages 3.5y and 31y)-daughter (1; age 6.75y) pair. 
Features common to both include arched eyebrows, bilateral colobomata, short nose 
with broad root, long philtrum and thin upper lip. Patient 1 has metopic ridging. 
Patient 2 had sagittal craniosynostosis, which has not been previously reported. Note 
coarsening of facial features with age in patient 2. The familial novel ACTB mutation 
is shown.  

Figure 1b. Three further BWCFF patients. Note typical facial appearance including 
arched eyebrows, ptosis (patients 3 & 5), hypertelorism, short nose, long philtrum and 
thin upper lip. Patient 4 (8y) has left sided unilateral, congenital glaucoma, not 
previously reported in BWCFF. Each patient’s mutation is shown. The mutation in 
patient 3 (8y) has been identified in one other patient40. Patient 4 has a novel 
mutation. The mutation in patient 5 (13y) is the most common in BWCFF (this patient 
was previously published5).  

Figure 2. Neuroimaging features: A & B axial T2 weighted images, C axial and D 
saggital T1 weighted images. Frontal pachygyria shown in A & B (black arrows) 
and more widespread pachygyria (black arrows) in C.  Short thick corpus 
callosum shown in D. Prominent perivascular spaces are shown in A & B. 
 
Figure 3. Recurrent mutations in BWCFF. ACTB (Refseq accession NM_001101.3) 
and ACTG1 (Refseq accession NM_001199954.1) genes are combined due to 
almost identical exon structure. Light grey: coding exons; dark grey: non coding 
exons. The first amino acid of each exon is shown. Functional domains: Divalent 
cation (Mg2+/Ca2+) binding domains (black arrows); Adenosine nucleotide 
binding domains (white arrows) and DNAse binding loop (triangles).  
Mutations with two or more documented cases are shown.

Table 1. Clinical features of BWCFF. Characteristics are divided 
according to frequency. Cardinal features of BWCFF highlighted in bold. 
Features with less than 10% occurrence in published literature not 
included.  
*Pachygyria/lissencephaly (60-70% of patients) and colobomata (25-30%) 
are major clues to the diagnosis of BWCFF.  This article is protected by copyright. All rights reserved.
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Figure 2 - legend as per manuscript text  
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