175 research outputs found

    Altered Cortical Gyrification in Adults Who Were Born Very Preterm and Its Associations With Cognition and Mental Health

    Get PDF
    Background: The last trimester of pregnancy is a critical period for the establishment of cortical gyrification, and altered folding patterns have been reported following very preterm birth (\u3c 33 weeks of gestation) in childhood and adolescence. However, research is scant on the persistence of such alterations in adulthood and their associations with cognitive and psychiatric outcomes. Methods: We studied 79 very preterm and 81 age-matched full-term control adults. T1-weighted magnetic resonance images were used to measure a local gyrification index (LGI), indicating the degree of folding across multiple vertices of the reconstructed cortical surface. Group and group-by-sex LGI differences were assessed by means of per-vertex adjustment for cortical thickness and overall intracranial volume. Within-group correlations were also computed between LGI and functional outcomes, including general intelligence (IQ) and psychopathology. Results: Very preterm adults had significantly reduced LGI in extensive cortical regions encompassing the frontal, anterior temporal, and occipitoparietal lobes. Alterations in lateral fronto-temporal-parietal and medial occipitoparietal regions were present in both men and women, although men showed more extensive alterations. In both very preterm and control adults, higher LGI was associated with higher IQ and lower psychopathology scores, with the spatial distribution of these associations substantially differing between the two groups. Conclusions: Very preterm adults’ brains are characterized by significant and widespread local hypogyria, and these alterations might be implicated in cognitive and psychiatric outcomes. Gyrification reflects an early developmental process and provides a fingerprint for very preterm birth

    Alterations in cortical thickness development in preterm-born individuals:Implications for high-order cognitive functions

    Get PDF
    AbstractVery preterm birth (gestational age <33weeks) is associated with alterations in cortical thickness and with neuropsychological/behavioural impairments. Here we studied cortical thickness in very preterm born individuals and controls in mid-adolescence (mean age 15years) and beginning of adulthood (mean age 20years), as well as longitudinal changes between the two time points. Using univariate approaches, we showed both increases and decreases in cortical thickness in very preterm born individuals compared to controls. Specifically (1) very preterm born adolescents displayed extensive areas of greater cortical thickness, especially in occipitotemporal and prefrontal cortices, differences which decreased substantially by early adulthood; (2) at both time points, very preterm-born participants showed smaller cortical thickness, especially in parahippocampal and insular regions. We then employed a multivariate approach (support vector machine) to study spatially discriminating features between the two groups, which achieved a mean accuracy of 86.5%. The spatially distributed regions in which cortical thickness best discriminated between the groups (top 5%) included temporal, occipitotemporal, parietal and prefrontal cortices. Within these spatially distributed regions (top 1%), longitudinal changes in cortical thickness in left temporal pole, right occipitotemporal gyrus and left superior parietal lobe were significantly associated with scores on language-based tests of executive function. These results describe alterations in cortical thickness development in preterm-born individuals in their second decade of life, with implications for high-order cognitive processing

    Altered resting-state functional connectivity in emotion-processing brain regions in adults who were born very preterm

    Get PDF
    Background. Very preterm birth (VPT; <32 weeks of gestation) has been associated with impairments in emotion regulation, social competence and communicative skills. However, the neuroanatomical mechanisms underlying such impairments have not been systematically studied. Here we investigated the functional integrity of the amygdala connectivity network in relation to the ability to recognize emotions from facial expressions in VPT adults. Method. Thirty-six VPT-born adults and 38 age-matched controls were scanned at rest in a 3-T MRI scanner. Restingstate functional connectivity (rs-fc) was assessed with SPM8. A seed-based analysis focusing on three amygdalar subregions (centro-medial/latero-basal/superficial) was performed. Participants’ ability to recognize emotions was assessed using dynamic stimuli of human faces expressing six emotions at different intensities with the Emotion Recognition Task (ERT). Results. VPT individuals compared to controls showed reduced rs-fc between the superficial subregion of the left amygdala, and the right posterior cingulate cortex (p = 0.017) and the left precuneus (p = 0.002). The VPT group further showed elevated rs-fc between the left superficial amygdala and the superior temporal sulcus (p = 0.008). Performance on the ERT showed that the VPT group was less able than controls to recognize anger at low levels of intensity. Anger scores were significantly associated with rs-fc between the superficial amygdala and the posterior cingulate cortex in controls but not in VPT individuals. Conclusions. These findings suggest that alterations in rs-fc between the amygdala, parietal and temporal cortices could represent the mechanism linking VPT birth and deficits in emotion processing

    A multimodal imaging study of recognition memory in very preterm born adults

    Get PDF
    Very preterm (<32 weeks of gestation) birth is associated with structural brain alterationsand memory impairments throughout childhood and adolescence. Here, we used functional MRI(fMRI) to study the neuroanatomy of recognition memory in 49 very preterm-born adults and 50 con-trols (mean age: 30 years) during completion of a task involving visual encoding and recognition ofabstract pictures. T1-weighted and diffusion-weighted images were also collected. Bilateral hippocam-pal volumes were calculated and tractography of the fornix and cingulum was performed and assessedin terms of volume and hindrance modulated orientational anisotropy (HMOA). Online recognitionmemory task performance, assessed with A scores, was poorer in the very preterm compared with thecontrol group. Analysis of fMRI data focused on differences in neural activity between the recognitionand encoding trials. Very preterm born adults showed decreased activation in the right middle frontalgyrus and posterior cingulate cortex/precuneus and increased activation in the left inferior frontalgyrus and bilateral lateral occipital cortex (LOC) compared with controls. Hippocampi, fornix and cin-gulum volume was significantly smaller and fornix HMOA was lower in very preterm adults. Amongall the structural and functional brain metrics that showed statistically significant group differences,LOC activation was the best predictor of online task performance (P 5 0.020). In terms of associationbetween brain function and structure, LOC activation was predicted by fornix HMOA in the pretermgroup only (P 5 0.020). These results suggest that neuroanatomical alterations in very preterm bornindividuals may be underlying their poorer recognition memory performance

    Relación entre déficits lingüísticos y atencionales en personas con afasia post-ictus: el papel de la modulación colinérgica

    Get PDF
    Objetivos: (1) Estudiar la prevalencia de déficits atencionales en personas con afasia crónica post-ictus (PACPI); (2) evaluar si la modulación del sistema colinérgico, con donepecilo, tiene efectos favorables sobre los déficits atencionales y de lenguaje en PACPI; (3) comparar estos efectos con los producidos por la modulación glutamatérgica con memantina; (4) estudiar los correlatos neurales de estas intervenciones. Método: 3 sub-estudios: (1) Comparamos el rendimiento de 55 PACPI con 25 controles sanos en tareas atencionales. (2) Ensayo clínico (20 semanas) aleatorizado, doble ciego y controlado con placebo de 13 PACPI tratados con donepezilo (10mg/día). (3) Ensayo clínico abierto de 10 PACPI tratados con donepezilo (10 mg/día; 8 semanas) y 14 PACPI tratados con memantina (20 mg/día; 16 semanas). Evaluación del lenguaje: Cociente de Afasia de la Western Aphasia Battery, Denominación por Frecuencia de la Evaluación del Procesamiento Psicolingüístico de la Afasia (EPLA 52). Medida de atención: California Computerized Assessment Package (CalCAP). Neuroimagen: 18FDG-PET y RMN funcional con un paradigma de denominación. Resultados (1) Los PACPI tienen peor rendimiento en tareas atencionales (CalCAP; t-test, p<0.05) que los controles. (2) La modulación del sistema colinérgico tiene efectos positivos en medidas de atención, y éstas correlacionan con mejor rendimiento en tareas de denominación (EPLA 52; Pearson's r, p<0.01). 3) Las PACPI que responden al tratamiento con donepecilo mejoran más que las que responden al tratamiento con memantina. La mejoría en denominación correlacionó (Pearson's r, p<0.01) con cambios en el metabolismo (18FDG-PET) y activación (fMRI) de áreas cerebrales inervadas por el sistema colinérgico. Conclusiones (1)Los déficits atencionales son frecuentes entre las PACPI, y éstos se relacionan con peor rendimiento en denominación. (2) El donepecilo tiene efectos positivos sobre los déficits atencionales y de denominación en PACPI.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    The effect of perinatal brain injury on dopaminergic function and hippocampal volume in adult life

    Get PDF
    Perinatal brain injuries, including hippocampal lesions, cause lasting changes in dopamine function in rodents, but it is not known if this occurs in humans. We compared adults who were born very preterm with perinatal brain injury to those born very preterm without perinatal brain injury, and age-matched controls born at full term using [18F]-DOPA PET and structural MRI. Dopamine synthesis capacity was reduced in the perinatal brain injury group relative to those without brain injury (Cohen's d = 1.36, p=0.02) and the control group (Cohen's d = 1.07, p=0.01). Hippocampal volume was reduced in the perinatal brain injury group relative to controls (Cohen's d = 1.17, p=0.01) and was positively correlated with striatal dopamine synthesis capacity (r = 0.344, p=0.03). This is the first evidence in humans linking neonatal hippocampal injury to adult dopamine dysfunction, and provides a potential mechanism linking early life risk factors to adult mental illness

    Prognostic value of cortically induced motor evoked activity by TMS in chronic stroke: caveats from a very revealing single clinical case

    Get PDF
    Background: We report the case of a chronic stroke patient (62 months after injury) showing total absence of motor activity evoked by transcranial magnetic stimulation (TMS) of spared regions of the left motor cortex, but near-to-complete recovery of motor abilities in the affected hand. Case presentation: Multimodal investigations included detailed TMS based motor mapping, motor evoked potentials (MEP), and Cortical Silent period (CSP) as well as functional magnetic resonance imaging (fMRI) of motor activity, MRI based lesion analysis and Diffusion Tensor Imaging (DTI) Tractography of corticospinal tract (CST). Anatomical analysis revealed a left hemisphere subinsular lesion interrupting the descending left CST at the level of the internal capsule. The absence of MEPs after intense TMS pulses to the ipsilesional M1, and the reversible suppression of ongoing electromyographic (EMG) activity (indexed by CSP) demonstrate a weak modulation of subcortical systems by the ipsilesional left frontal cortex, but an inability to induce efficient descending volleys from those cortical locations to right hand and forearm muscles. Functional MRI recordings under grasping and finger tapping patterns involving the affected hand showed slight signs of subcortical recruitment, as compared to the unaffected hand and hemisphere, as well as the expected cortical activations. Conclusions: The potential sources of motor voluntary activity for the affected hand in absence of MEPs are discussed. We conclude that multimodal analysis may contribute to a more accurate prognosis of stroke patients
    corecore