276 research outputs found

    Curriculum Infusion Through Case Studies: Engaging Undergraduate Students In Course Subject Material and Influencing Behavior Change

    Get PDF
    This study investigated infusing health promotion topics into an engineering course via problem-based case studies and lecture to assess student learning and self-reported behavior. Junior-level systems engineering students in two sections participated: one section with 52 students and one with 36. One section received a celebratory drinking case; one received distracted driving case and a lecture about hazardous drinking. Student ability ratings related to the course subject matter generally improved with both cases. The lecture appeared to enhance health promotion knowledge. Students self-reported behavior change with both cases. Case studies as a form of curriculum infusion for health promotion topics show promise. The use of case studies overall was well-received by students and coupled with lecture material can increase student health promotion knowledge and behavior change

    Long-Range Correlations and the Momentum Distribution in Nuclei

    Get PDF
    The influence of correlations on the momentum distribution of nucleons in nuclei is evaluated starting from a realistic nucleon-nucleon interaction. The calculations are performed directly for the finite nucleus \,^{16}O making use of the Green's function approach. The emphasis is focused on the correlations induced by the excitation modes at low energies described within a model-space of shell-model configurations including states up to the sdg shell. Our analysis demonstrates that these long-range correlations do not produce any significant enhancement of the momentum distribution at high missing momenta and low missing energies. This is in agreement with high resolution (e,e′p)(e,e'p) experiments for this nucleus. We also try to simulate the corresponding effects in large nuclei by quenching the energy-spacing between single-particle orbits. This yields a sizable enhancement of the spectral function at large momenta and small energy. Such behavior could explain the deviation of the momentum distribution from the mean field prediction, which has been observed in (e,e′p)(e,e'p) experiments on heavy nuclei like 208^{208}Pb

    Correlations and the Cross Section of Exclusive (e,e′pe,e'p) Reactions for 16^{16}O

    Get PDF
    The reduced cross section for exclusive (e,e′pe,e'p) reactions has been studied in DWIA for the example of the nucleus 16^{16}O using a spectral function containing effects of correlations. The spectral function is evaluated directly for the finite nucleus starting from a realistic nucleon-nucleon interaction within the framework of the Green's function approach. The emphasis is focused on the correlations induced by excitation modes at low energies described within a model-space of shell-model configurations including states up to the sdgsdg shell. Cross sections for the pp-wave quasi-hole transitions at low missing energies are presented and compared with the most recent experimental data. In the case of the so-called perpendicular kinematics the reduced cross section derived in DWIA shows an enhancement at high missing momenta as compared to the PWIA result. Furthermore the cross sections for the ss- and dd-wave quasi-hole transitions are presented and compared to available data at low missing momenta. Also in these cases, which cannot be described in a model without correlations, a good agreement with the experiment is obtained.Comment: 12 pages, LaTeX, 4 figures include

    Derivative-Coupling Models and the Nuclear-Matter Equation of State

    Get PDF
    The equation of state of saturated nuclear matter is derived using two different derivative-coupling Lagrangians. We show that both descriptions are equivalent and can be obtained from the sigma-omega model through an appropriate rescaling of the coupling constants. We introduce generalized forms of this rescaling to study the correlations amongst observables in infinite nuclear matter, in particular, the compressibility and the effective nucleon mass.Comment: 16 pages, 6 figures, 36 kbytes. To appear in Zeit. f. Phys. A (Hadrons and Nuclei

    Two-Body Correlations in Nuclear Systems

    Get PDF
    Correlations in the nuclear wave-function beyond the mean-field or Hartree-Fock approximation are very important to describe basic properties of nuclear structure. Various approaches to account for such correlations are described and compared to each other. This includes the hole-line expansion, the coupled cluster or ``exponential S'' approach, the self-consistent evaluation of Greens functions, variational approaches using correlated basis functions and recent developments employing quantum Monte-Carlo techniques. Details of these correlations are explored and their sensitivity to the underlying nucleon-nucleon interaction. Special attention is paid to the attempts to investigate these correlations in exclusive nucleon knock-out experiments induced by electron scattering. Another important issue of nuclear structure physics is the role of relativistic effects as contained in phenomenological mean field models. The sensitivity of various nuclear structure observables on these relativistic features are investigated. The report includes the discussion of nuclear matter as well as finite nuclei.Comment: Review, 104 pages including figure

    Liquid-gas phase transition in nuclear multifragmentation

    Get PDF
    The equation of state of nuclear matter suggests that at suitable beam energies the disassembling hot system formed in heavy ion collisions will pass through a liquid-gas coexistence region. Searching for the signatures of the phase transition has been a very important focal point of experimental endeavours in heavy ion collisions, in the last fifteen years. Simultaneously theoretical models have been developed to provide information about the equation of state and reaction mechanisms consistent with the experimental observables. This article is a review of this endeavour.Comment: 63 pages, 27 figures, submitted to Adv. Nucl. Phys. Some typos corrected, minor text change

    The role of agonist and antagonist muscles in explaining isometric knee extension torque variation with hip joint angle.

    Get PDF
    PURPOSE: The biarticular rectus femoris (RF), operating on the ascending limb of the force-length curve, produces more force at longer lengths. However, experimental studies consistently report higher knee extension torque when supine (longer RF length) compared to seated (shorter RF length). Incomplete activation in the supine position has been proposed as the reason for this discrepancy, but differences in antagonistic co-activation could also be responsible due to altered hamstrings length. We examined the role of agonist and antagonist muscles in explaining the isometric knee extension torque variation with changes in hip joint angle. METHOD: Maximum voluntary isometric knee extension torque (joint MVC) was recorded in seated and supine positions from nine healthy males (30.2 ± 7.7 years). Antagonistic torque was estimated using EMG and added to the respective joint MVC (corrected MVC). Submaximal tetanic stimulation quadriceps torque was also recorded. RESULT: Joint MVC was not different between supine (245 ± 71.8 Nm) and seated (241 ± 69.8 Nm) positions and neither was corrected MVC (257 ± 77.7 and 267 ± 87.0 Nm, respectively). Antagonistic torque was higher when seated (26 ± 20.4 Nm) than when supine (12 ± 7.4 Nm). Tetanic torque was higher when supine (111 ± 31.9 Nm) than when seated (99 ± 27.5 Nm). CONCLUSION: Antagonistic co-activation differences between hip positions do not account for the reduced MVC in the supine position. Rather, reduced voluntary knee extensor muscle activation in that position is the major reason for the lower MVC torque when RF is lengthened (hip extended). These findings can assist standardising muscle function assessment and improving musculoskeletal modelling applications

    Predation on an Upper Trophic Marine Predator, the Steller Sea Lion: Evaluating High Juvenile Mortality in a Density Dependent Conceptual Framework

    Get PDF
    The endangered western stock of the Steller sea lion (Eumetopias jubatus) – the largest of the eared seals – has declined by 80% from population levels encountered four decades ago. Current overall trends from the Gulf of Alaska to the Aleutian Islands appear neutral with strong regional heterogeneities. A published inferential model has been used to hypothesize a continuous decline in natality and depressed juvenile survival during the height of the decline in the mid-late 1980's, followed by the recent recovery of juvenile survival to pre-decline rates. However, these hypotheses have not been tested by direct means, and causes underlying past and present population trajectories remain unresolved and controversial. We determined post-weaning juvenile survival and causes of mortality using data received post-mortem via satellite from telemetry transmitters implanted into 36 juvenile Steller sea lions from 2005 through 2011. Data show high post-weaning mortality by predation in the eastern Gulf of Alaska region. To evaluate the impact of such high levels of predation, we developed a conceptual framework to integrate density dependent with density independent effects on vital rates and population trajectories. Our data and model do not support the hypothesized recent recovery of juvenile survival rates and reduced natality. Instead, our data demonstrate continued low juvenile survival in the Prince William Sound and Kenai Fjords region of the Gulf of Alaska. Our results on contemporary predation rates combined with the density dependent conceptual framework suggest predation on juvenile sea lions as the largest impediment to recovery of the species in the eastern Gulf of Alaska region. The framework also highlights the necessity for demographic models based on age-structured census data to incorporate the differential impact of predation on multiple vital rates

    Facial Cosmetics and Attractiveness: Comparing the Effect Sizes of Professionally-Applied Cosmetics and Identity

    Get PDF
    Forms of body decoration exist in all human cultures. However, in Western societies, women are more likely to engage in appearance modification, especially through the use of facial cosmetics. How effective are cosmetics at altering attractiveness? Previous research has hinted that the effect is not large, especially when compared to the variation in attractiveness observed between individuals due to differences in identity. In order to build a fuller understanding of how cosmetics and identity affect attractiveness, here we examine how professionally-applied cosmetics alter attractiveness and compare this effect with the variation in attractiveness observed between individuals. In Study 1, 33 YouTube models were rated for attractiveness before and after the application of professionally-applied cosmetics. Cosmetics explained a larger proportion of the variation in attractiveness compared with previous studies, but this effect remained smaller than variation caused by differences in attractiveness between individuals. Study 2 replicated the results of the first study with a sample of 45 supermodels, with the aim of examining the effect of cosmetics in a sample of faces with low variation in attractiveness between individuals. While the effect size of cosmetics was generally large, between-person variability due to identity remained larger. Both studies also found interactions between cosmetics and identity-more attractive models received smaller increases when cosmetics were worn. Overall, we show that professionally- applied cosmetics produce a larger effect than self-applied cosmetics, an important theoretical consideration for the field. However, the effect of individual differences in facial appearance is ultimately more important in perceptions of attractiveness
    • …
    corecore