196 research outputs found

    Sources and sinks of methane in sea ice: Insights from stable isotopes

    Get PDF
    We report on methane (CH4) stable isotope (d13C and d2 H) measurements from landfast sea ice collected near Barrow (Utqiagvik, Alaska) and Cape Evans (Antarctica) over the winter-to-spring transition. These measurements provide novel insights into pathways of CH4 production and consumption in sea ice. We found substantial differences between the two sites. Sea ice overlying the shallow shelf of Barrow was supersaturated in CH4 with a clear microbial origin, most likely from methanogenesis in the sediments. We estimated that in situ CH4 oxidation consumed a substantial fraction of the CH4 being supplied to the sea ice, partly explaining the large range of isotopic values observed (d13C between –68.5 and –48.5 ‰ and d2 H between –246 and –104 ‰). Sea ice at Cape Evans was also supersaturated in CH4 but with surprisingly high d13C values (between –46.9 and –13.0 ‰), whereas d2 H values (between –313 and –113 ‰) were in the range of those observed at Barrow.These are the first measurements of CH4 isotopic composition in Antarctic sea ice. Our data set suggests a potential combination of a hydrothermal source, in the vicinity of the Mount Erebus, with aerobic CH4 formation in sea ice, although the metabolic pathway for the latter still needs to be elucidated. Our observations show that sea ice needs to be considered as an active biogeochemical interface, contributing to CH4 production and consumption, which disputes the standing paradigm that sea ice is an inert barrier passively accumulating CH4 at the ocean-atmosphere boundary

    Database of nitrification and nitrifiers in the global ocean

    Get PDF
    As a key biogeochemical pathway in the marine nitrogen cycle, nitrification (ammonia oxidation and nitrite oxidation) converts the most reduced form of nitrogen – ammonium–ammonia (NH4+–NH3) – into the oxidized species nitrite (NO2-) and nitrate (NO3-). In the ocean, these processes are mainly performed by ammonia-oxidizing archaea (AOA) and bacteria (AOB) and nitrite-oxidizing bacteria (NOB). By transforming nitrogen speciation and providing substrates for nitrogen removal, nitrification affects microbial community structure; marine productivity (including chemoautotrophic carbon fixation); and the production of a powerful greenhouse gas, nitrous oxide (N2O). Nitrification is hypothesized to be regulated by temperature, oxygen, light, substrate concentration, substrate flux, pH and other environmental factors. Although the number of field observations from various oceanic regions has increased considerably over the last few decades, a global synthesis is lacking, and understanding how environmental factors control nitrification remains elusive. Therefore, we have compiled a database of nitrification rates and nitrifier abundance in the global ocean from published literature and unpublished datasets. This database includes 2393 and 1006 measurements of ammonia oxidation and nitrite oxidation rates and 2242 and 631 quantifications of ammonia oxidizers and nitrite oxidizers, respectively. This community effort confirms and enhances our understanding of the spatial distribution of nitrification and nitrifiers and their corresponding drivers such as the important role of substrate concentration in controlling nitrification rates and nitrifier abundance. Some conundrums are also revealed, including the inconsistent observations of light limitation and high rates of nitrite oxidation reported from anoxic waters. This database can be used to constrain the distribution of marine nitrification, to evaluate and improve biogeochemical models of nitrification, and to quantify the impact of nitrification on ecosystem functions like marine productivity and N2O production. This database additionally sets a baseline for comparison with future observations and guides future exploration (e.g., measurements in the poorly sampled regions such as the Indian Ocean and method comparison and/or standardization). The database is publicly available at the Zenodo repository: https://doi.org/10.5281/zenodo.8355912 (Tang et al., 2023).</p

    Is hepatitis C virus elimination possible among people living with HIV and what will it take to achieve it?

    Get PDF
    Introduction The World Health Organization targets for hepatitis C virus (HCV) elimination include a 90% reduction in new infections by 2030. Our objective is to review the modelling evidence and cost data surrounding feasibility of HCV elimination among people living with HIV (PLWH), and identify likely components for elimination. We also discuss the real‐world experience of HCV direct acting antiviral (DAA) scale‐up and elimination efforts in the Netherlands. Methods We review modelling evidence of what intervention scale‐up is required to achieve WHO HCV elimination targets among HIV‐infected (HIV+) people who inject drugs (PWID) and men who have sex with men (MSM), review cost‐effectiveness of HCV therapy among PLWH and discuss economic implications of elimination. We additionally use the real‐world experience of DAA scale‐up in the Netherlands to illustrate the promise and potential challenges of HCV elimination strategies in MSM. Finally, we summarize key components of the HCV elimination response among PWLH. Results and discussion Modelling indicates HCV elimination among HIV+ MSM and PWID is potentially achievable but requires combination treatment and either harm reduction or behavioural risk reductions. Preliminary modelling indicates elimination among HIV+ PWID will require elimination efforts among PWID more broadly. Treatment for PLWH and high‐risk populations (PWID and MSM) is cost‐effective in high‐income countries, but costs of DAAs remain a barrier to scale‐up worldwide despite the potential low production price ($50 per 12 week course). In the Netherlands, universal DAA availability led to rapid uptake among HIV+ MSM in 2015/16, and a 50% reduction in acute HCV incidence among HIV+ MSM from 2014 to 2016 was observed. In addition to HCV treatment, elimination among PLWH globally also likely requires regular HCV testing, development of low‐cost accurate HCV diagnostics, reduced costs of DAA therapy, broad treatment access without restrictions, close monitoring for HCV reinfection and retreatment, and harm reduction and/or behavioural interventions. Conclusions Achieving WHO HCV Elimination targets is potentially achievable among HIV‐infected populations. Among HIV+ PWID, it likely requires HCV treatment scale‐up combined with harm reduction for both HIV+ and HIV‐ populations. Among HIV+ MSM, elimination likely requires both HCV treatment and behaviour risk reduction among the HIV+ MSM pop

    The isotope effect of nitrate assimilation in the Antarctic Zone: Improved estimates and paleoceanographic implications

    Get PDF
    Both the nitrogen (N) isotopic composition (ÎŽ^(15)N) of the nitrate source and the magnitude of isotope discrimination associated with nitrate assimilation are required to estimate the degree of past nitrate consumption from the ÎŽ^(15)N of organic matter in Southern Ocean sediments (e.g., preserved within diatom microfossils). It has been suggested that the amplitude of isotope discrimination (i.e. the isotope effect) correlates with mixed layer depth, driven by a physiological response of phytoplankton to light availability, which introduces complexity to the interpretation of sedimentary records. However, most of the isotope effectestimates that underpin this hypothesis derive from acid-preserved water samples, from which nitrite would have been volatilized and lost during storage. Nitrite ÎŽ^(15)N in Antarctic Zone surface waters is extremely low (−61 ± 20‰), consistent with the expression of an equilibrium isotope effect associated with nitrate–nitrite interconversion. Its loss from the combined nitrate + nitrite pool would act to raise the ÎŽ^(15)N of nitrate, potentially yielding overestimation of the isotope effect. Here, we revisit the nitrate assimilation isotope effect in the Antarctic Zone with measurements of the ÎŽ^(15)N and concentration of nitrate with and without nitrite, using frozen sea water samples from 5 different cruises that collectively cover all sectors of the Southern Ocean. The N isotope effect estimated using nitrate + nitrite ÎŽ^(15)N is relatively constant (5.5 ± 0.6‰) across the Antarctic Zone, shows no relationship with mixed layer depth, and is in agreement with sediment trap ÎŽ^(15)N measurements. Estimates of the N isotope effect derived from nitrate-only ÎŽ^(15)N are higher and more variable (7.9 ± 1.5‰), consistent with an artifact from nitrate-nitrite isotope exchange. In the case of the Southern Ocean, we conclude that the ÎŽ^(15)N of nitrate + nitrite better reflects the isotope effect of nitrate assimilation. The stability of this isotope effect across the Antarctic Zone simplifies the effort to reconstruct the past degree of nitrate consumption

    The future of Arctic sea-ice biogeochemistry and ice-associated ecosystems

    Get PDF
    The Arctic sea-ice-scape is rapidly transforming. Increasing light penetration will initiate earlier seasonal primary production. This earlier growing season may be accompanied by an increase in ice algae and phytoplankton biomass, augmenting the emission of dimethylsulfide and capture of carbon dioxide. Secondary production may also increase on the shelves, although the loss of sea ice exacerbates the demise of sea-ice fauna, endemic fish and megafauna. Sea-ice loss may also deliver more methane to the atmosphere, but warmer ice may release fewer halogens, resulting in fewer ozone depletion events. The net changes in carbon drawdown are still highly uncertain. Despite large uncertainties in these assessments, we expect disruptive changes that warrant intensified long-term observations and modelling efforts

    The GEOTRACES Intermediate Data Product 2014

    Get PDF
    The GEOTRACES Intermediate Data Product 2014 (IDP2014) is the first publicly available data product of the international GEOTRACES programme, and contains data measured and quality controlled before the end of 2013. It consists of two parts: (1) a compilation of digital data for more than 200 trace elements and isotopes (TEIs) as well as classical hydrographic parameters, and (2) the eGEOTRACES Electronic Atlas providing a strongly inter-linked on-line atlas including more than 300 section plots and 90 animated 3D scenes. The IDP2014 covers the Atlantic, Arctic, and Indian oceans, exhibiting highest data density in the Atlantic. The TEI data in the IDP2014 are quality controlled by careful assessment of intercalibration results and multi-laboratory data comparisons at cross-over stations. The digital data are provided in several formats, including ASCII spreadsheet, Excel spreadsheet, netCDF, and Ocean Data View collection. In addition to the actual data values the IDP2014 also contains data quality flags and 1-? data error values where available. Quality flags and error values are useful for data filtering. Metadata about data originators, analytical methods and original publications related to the data are linked to the data in an easily accessible way. The eGEOTRACES Electronic Atlas is the visual representation of the IDP2014 data providing section plots and a new kind of animated 3D scenes. The basin-wide 3D scenes allow for viewing of data from many cruises at the same time, thereby providing quick overviews of large-scale tracer distributions. In addition, the 3D scenes provide geographical and bathymetric context that is crucial for the interpretation and assessment of observed tracer plumes, as well as for making inferences about controlling processes

    Macro-nutrients in sea ice: Overall pattern and related processes

    No full text
    info:eu-repo/semantics/nonPublishe

    Approches isotopiques du silicium: l'Océan Austral comme cas d'étude.

    No full text
    We investigate the silicon (Si) cycle in the Southern Ocean through two isotopic approaches: (1) 30Si-incubation experiments and (2) natural silicon isotopic composition (À30Si). 30Si-spiked incubation allows to discriminate the short-term (~ 1 day) net Si-uptake flux in bSiO2 production and dissolution. À30Si of both biogenic silica and dissolved silicon integrates at seasonal/annual scale bSiO2 production or dissolution and mixing.(1) A new mass spectrometer method (HR-SF-ICPMS) has been developed for 30Si-isotopic abundance measurements. This methodology is faster and easier than the previous available methodologies and has the same precision. A complete set of incubation was coupled with parallel 32Si-incubations and the two methodologies give not significantly different bSiO2 production rates. In the Southern Ocean, especially in the southern Antarctic Circumpolar Current, the large silicic acid concentration degrades the sensitivity of the method with Si dissolution fluxes staying generally below the detection limit. In contrast, the 28Si-isotopic dilution was sensitive enough to assess low biogenic silica dissolution rates in silicic acid poor waters of the northern ACC. We show that large accumulation of detrital dissolving biogenic silica after productive period implies really efficient silicon loop with integrated (euphotic layer) dissolution:production ratio equal or larger than 1. (2) We largely expand the silicic acid isotopic data in the open ocean. Relatively simple mass and isotopic balances have been performed in the Antarctic Zone and have allowed to apply for the first time À30Si in a quantitative way to estimate regional net silica production and quantify source waters fueling bSiO2 productivity. We observe that at the end of the productive period as suggested with 30Si-incubation, large accumulation of detrital biogenic silica in the surface waters increase the D:P ratio and subsequently dampens the bSiO2 production mediated isotopic fractionation with residual biogenic silica carrying heavier À30Si than expected. Seasonal isotopic evolution is simulated and seems in agreement with our observations. These simulations strongly suggest working with non-zero order equations to fully assess the seasonal expression of the different processes involved: mixing, uptake, dissolution. Si-isotopes are also tracking the origin and fates of the different ACC pools across the Southern Ocean meridional circulation. Moreover during the circumpolar eastward pathway, the bSiO2 dissolution in deep water decreases the corresponding À30Si values and this imprint is further transmitted via the upper limb of the meridional circulation in the intermediate water masses.Doctorat en Sciencesinfo:eu-repo/semantics/nonPublishe
    • 

    corecore