194 research outputs found

    Trapping of Projectiles in Fixed Scatterer Calculations

    Full text link
    We study multiple scattering off nuclei in the closure approximation. Instead of reducing the dynamics to one particle potential scattering, the scattering amplitude for fixed target configurations is averaged over the target groundstate density via stochastic integration. At low energies a strong coupling limit is found which can not be obtained in a first order optical potential approximation. As its physical explanation, we propose it to be caused by trapping of the projectile. We analyse this phenomenon in mean field and random potential approximations. (PACS: 24.10.-i)Comment: 15 page

    Socially Parasitic Ants Evolve a Mosaic of Host-Matching and Parasitic Morphological Traits

    Get PDF
    A basic expectation of evolution by natural selection is that species morphologies will adapt to their ecological niche. In social organisms, this may include selective pressure from the social environment. Many nonant parasites of ant colonies are known to mimic the morphology of their host species, often in striking fashion [1, 2], indicating there is selection on parasite morphology to match the host (Batesian and/or Wasmannian mimicry [3]). However, ants that parasitize other ant societies are usually closely related to their hosts (Emery’s rule) [4–8] and expected to be similar due to common ancestry, making any kind of mimicry difficult to detect [9]. Here, we investigate the diversification of the hyperdiverse ant genus Pheidole in Madagascar, including the evolution of 13 putative social parasite species within a broader radiation of over 100 ant species on the island. We find that the parasitic species are monophyletic and that their associated hosts are spread across the Malagasy Pheidole radiation. This provides an opportunity to test for selection on morphological similarity and divergence between parasites and hosts. Using X-ray microtomography and both linear measurements and three-dimensional (3D) geometric morphometrics, we show that ant social parasite worker morphologies feature a mix of ‘‘host-matching’’ and ‘‘parasitic’’ traits, where the former converge on the host phenotype and the latter diverge from typical Pheidole phenotypes to match a common parasitic syndrome. This finding highlights the role of social context in shaping the evolution of phenotypes and raises questions about the role of morphological sensing in nestmate recognition.All fieldwork was funded by National Science Foundation grants DEB0072713, DEB-0344731, and DEB-0842395 (to B.L.F.). Lab work was supported by a National Science Foundation grant (DEB-1145989) (to E.P.E. and L.L.K.) and subsidy funding to OIS

    Negative Kaons in Dense Baryonic Matter

    Get PDF
    Kaon polarization operator in dense baryonic matter of arbitrary isotopic composition is calculated including s- and p-wave kaon-baryon interactions. The regular part of the polarization operator is extracted from the realistic kaon-nucleon interaction based on the chiral and 1/N_c expansion. Contributions of the Lambda(1116), Sigma(1195), Sigma*(1385) resonances are taken explicitly into account in the pole and regular terms with inclusion of mean-field potentials. The baryon-baryon correlations are incorporated and fluctuation contributions are estimated. Results are applied for K- in neutron star matter. Within our model a second-order phase transition to the s-wave K- condensate state occurs at rho_c \gsim 4 \rho_0 once the baryon-baryon correlations are included. We show that the second-order phase transition to the p-wave KK^- condensate state may occur at densities ρc3÷5ρ0\rho_c \sim 3\div 5 \rho_0 in dependence on the parameter choice. We demonstrate that a first-order phase transition to a proton-enriched (approximately isospin-symmetric) nucleon matter with a p-wave K- condensate can occur at smaller densities, \rho\lsim 2 \rho_0. The transition is accompanied by the suppression of hyperon concentrations.Comment: 41 pages, 24 figures, revtex4 styl

    Modeling Translation in Protein Synthesis with TASEP: A Tutorial and Recent Developments

    Full text link
    The phenomenon of protein synthesis has been modeled in terms of totally asymmetric simple exclusion processes (TASEP) since 1968. In this article, we provide a tutorial of the biological and mathematical aspects of this approach. We also summarize several new results, concerned with limited resources in the cell and simple estimates for the current (protein production rate) of a TASEP with inhomogeneous hopping rates, reflecting the characteristics of real genes.Comment: 25 pages, 7 figure

    Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980�2015: a systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    Background Improving survival and extending the longevity of life for all populations requires timely, robust evidence on local mortality levels and trends. The Global Burden of Disease 2015 Study (GBD 2015) provides a comprehensive assessment of all-cause and cause-specific mortality for 249 causes in 195 countries and territories from 1980 to 2015. These results informed an in-depth investigation of observed and expected mortality patterns based on sociodemographic measures. Methods We estimated all-cause mortality by age, sex, geography, and year using an improved analytical approach originally developed for GBD 2013 and GBD 2010. Improvements included refinements to the estimation of child and adult mortality and corresponding uncertainty, parameter selection for under-5 mortality synthesis by spatiotemporal Gaussian process regression, and sibling history data processing. We also expanded the database of vital registration, survey, and census data to 14�294 geography�year datapoints. For GBD 2015, eight causes, including Ebola virus disease, were added to the previous GBD cause list for mortality. We used six modelling approaches to assess cause-specific mortality, with the Cause of Death Ensemble Model (CODEm) generating estimates for most causes. We used a series of novel analyses to systematically quantify the drivers of trends in mortality across geographies. First, we assessed observed and expected levels and trends of cause-specific mortality as they relate to the Socio-demographic Index (SDI), a summary indicator derived from measures of income per capita, educational attainment, and fertility. Second, we examined factors affecting total mortality patterns through a series of counterfactual scenarios, testing the magnitude by which population growth, population age structures, and epidemiological changes contributed to shifts in mortality. Finally, we attributed changes in life expectancy to changes in cause of death. We documented each step of the GBD 2015 estimation processes, as well as data sources, in accordance with Guidelines for Accurate and Transparent Health Estimates Reporting (GATHER). Findings Globally, life expectancy from birth increased from 61·7 years (95 uncertainty interval 61·4�61·9) in 1980 to 71·8 years (71·5�72·2) in 2015. Several countries in sub-Saharan Africa had very large gains in life expectancy from 2005 to 2015, rebounding from an era of exceedingly high loss of life due to HIV/AIDS. At the same time, many geographies saw life expectancy stagnate or decline, particularly for men and in countries with rising mortality from war or interpersonal violence. From 2005 to 2015, male life expectancy in Syria dropped by 11·3 years (3·7�17·4), to 62·6 years (56·5�70·2). Total deaths increased by 4·1 (2·6�5·6) from 2005 to 2015, rising to 55·8 million (54·9 million to 56·6 million) in 2015, but age-standardised death rates fell by 17·0 (15·8�18·1) during this time, underscoring changes in population growth and shifts in global age structures. The result was similar for non-communicable diseases (NCDs), with total deaths from these causes increasing by 14·1 (12·6�16·0) to 39·8 million (39·2 million to 40·5 million) in 2015, whereas age-standardised rates decreased by 13·1 (11·9�14·3). Globally, this mortality pattern emerged for several NCDs, including several types of cancer, ischaemic heart disease, cirrhosis, and Alzheimer's disease and other dementias. By contrast, both total deaths and age-standardised death rates due to communicable, maternal, neonatal, and nutritional conditions significantly declined from 2005 to 2015, gains largely attributable to decreases in mortality rates due to HIV/AIDS (42·1, 39·1�44·6), malaria (43·1, 34·7�51·8), neonatal preterm birth complications (29·8, 24·8�34·9), and maternal disorders (29·1, 19·3�37·1). Progress was slower for several causes, such as lower respiratory infections and nutritional deficiencies, whereas deaths increased for others, including dengue and drug use disorders. Age-standardised death rates due to injuries significantly declined from 2005 to 2015, yet interpersonal violence and war claimed increasingly more lives in some regions, particularly in the Middle East. In 2015, rotaviral enteritis (rotavirus) was the leading cause of under-5 deaths due to diarrhoea (146�000 deaths, 118�000�183�000) and pneumococcal pneumonia was the leading cause of under-5 deaths due to lower respiratory infections (393�000 deaths, 228�000�532�000), although pathogen-specific mortality varied by region. Globally, the effects of population growth, ageing, and changes in age-standardised death rates substantially differed by cause. Our analyses on the expected associations between cause-specific mortality and SDI show the regular shifts in cause of death composition and population age structure with rising SDI. Country patterns of premature mortality (measured as years of life lost YLLs) and how they differ from the level expected on the basis of SDI alone revealed distinct but highly heterogeneous patterns by region and country or territory. Ischaemic heart disease, stroke, and diabetes were among the leading causes of YLLs in most regions, but in many cases, intraregional results sharply diverged for ratios of observed and expected YLLs based on SDI. Communicable, maternal, neonatal, and nutritional diseases caused the most YLLs throughout sub-Saharan Africa, with observed YLLs far exceeding expected YLLs for countries in which malaria or HIV/AIDS remained the leading causes of early death. Interpretation At the global scale, age-specific mortality has steadily improved over the past 35 years; this pattern of general progress continued in the past decade. Progress has been faster in most countries than expected on the basis of development measured by the SDI. Against this background of progress, some countries have seen falls in life expectancy, and age-standardised death rates for some causes are increasing. Despite progress in reducing age-standardised death rates, population growth and ageing mean that the number of deaths from most non-communicable causes are increasing in most countries, putting increased demands on health systems. Funding Bill & Melinda Gates Foundation. © 2016 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY licens

    Search for the lepton-flavour violating decay D0e±μD^0 \to e^\pm\mu^\mp

    Get PDF
    A search for the lepton-flavour violating decay D0e±μD^0 \to e^\pm \mu^\mp is made with a dataset corresponding to an integrated luminosity of 3.03.0 fb1^{-1} of proton-proton collisions at centre-of-mass energies of 77 TeV and 88 TeV, collected by the LHCb experiment. Candidate D0D^0 mesons are selected using the decay D+D0π+D^{*+} \to D^0 \pi^+ and the D0e±μD^0 \to e^\pm \mu^\mp branching fraction is measured using the decay mode D0Kπ+D^0 \to K^- \pi^+ as a normalisation channel. No significant excess of D0e±μD^0 \to e^\pm \mu^\mp candidates over the expected background is seen, and a limit is set on the branching fraction, B(D0e±μ)<1.3×108\mathcal{B}(D^0 \to e^\pm \mu^\mp) < 1.3 \times 10^{-8}, at 90 % confidence level. This is an order of magnitude lower than the previous limit and it further constrains the parameter space in some leptoquark models and in supersymmetric models with R-parity violation.A search for the lepton-flavour violating decay D0→e±μ∓ is made with a dataset corresponding to an integrated luminosity of 3.0fb−1 of proton–proton collisions at centre-of-mass energies of 7 TeV and 8 TeV , collected by the LHCb experiment. Candidate D0 mesons are selected using the decay D⁎+→D0π+ and the D0→e±μ∓ branching fraction is measured using the decay mode D0→K−π+ as a normalization channel. No significant excess of D0→e±μ∓ candidates over the expected background is seen, and a limit is set on the branching fraction, B(D0→e±μ∓)<1.3×10−8 , at 90% confidence level. This is an order of magnitude lower than the previous limit and it further constrains the parameter space in some leptoquark models and in supersymmetric models with R-parity violation.A search for the lepton-flavour violating decay D0e±μD^0 \to e^\pm \mu^\mp is made with a dataset corresponding to an integrated luminosity of 3.0 fb1^{-1} of proton-proton collisions at centre-of-mass energies of 77 TeV and 88 TeV, collected by the LHCb experiment. Candidate D0D^0 mesons are selected using the decay D+D0π+D^{*+} \to D^0 \pi^+ and the D0e±μD^0 \to e^\pm \mu^\mp branching fraction is measured using the decay mode D0Kπ+D^0 \to K^-\pi^+ as a normalisation channel. No significant excess of D0e±μD^0 \to e^\pm \mu^\mp candidates over the expected background is seen, and a limit is set on the branching fraction, B(D0e±μ)<1.3×108\mathcal{B}(D^0 \to e^\pm \mu^\mp) < 1.3 \times 10^{-8}, at 90 % confidence level. This is an order of magnitude lower than the previous limit and it further constrains the parameter space in some leptoquark models and in supersymmetric models with R-parity violation
    corecore