8 research outputs found

    A late Middle Pleistocene Denisovan mandible from the Tibetan Plateau

    Get PDF
    Denisovans are members of a hominin group who are currently only known directly from fragmentary fossils, the genomes of which have been studied from a single site, Denisova Cave in Siberia. They are also known indirectly from their genetic legacy through gene flow into several low-altitude East Asian populations and high-altitude modern Tibetans6. The lack of morphologically informative Denisovan fossils hinders our ability to connect geographically and temporally dispersed fossil hominins from Asia and to understand in a coherent manner their relation to recent Asian populations. This includes understanding the genetic adaptation of humans to the high-altitude Tibetan Plateau, which was inherited from the Denisovans. Here we report a Denisovan mandible, identified by ancient protein analysis, found on the Tibetan Plateau in Baishiya Karst Cave, Xiahe, Gansu, China. We determine the mandible to be at least 160 thousand years old through U-series dating of an adhering carbonate matrix. The Xiahe specimen provides direct evidence of the Denisovans outside the Altai Mountains and its analysis unique insights into Denisovan mandibular and dental morphology. Our results indicate that archaic hominins occupied the Tibetan Plateau in the Middle Pleistocene epoch and successfully adapted to high-altitude hypoxic environments long before the regional arrival of modern Homo sapiens

    New fossils from Jebel Irhoud, Morocco and the pan-African origin of Homo sapiens

    Get PDF
    Fossil evidence points to an African origin of Homo sapiens from a group called either H. heidelbergensis or H. rhodesiensis. However, the exact place and time of emergence of H. sapiens remain obscure because the fossil record is scarce and the chronological age of many key specimens remains uncertain. In particular, it is unclear whether the present day ‘modern’ morphology rapidly emerged approximately 200 thousand years ago (ka) among earlier representatives of H. sapiens1 or evolved gradually over the last 400 thousand years2. Here we report newly discovered human fossils from Jebel Irhoud, Morocco, and interpret the affinities of the hominins from this site with other archaic and recent human groups. We identified a mosaic of features including facial, mandibular and dental morphology that aligns the Jebel Irhoud material with early or recent anatomically modern humans and more primitive neurocranial and endocranial morphology. In combination with an age of 315?±?34 thousand years (as determined by thermoluminescence dating)3, this evidence makes Jebel Irhoud the oldest and richest African Middle Stone Age hominin site that documents early stages of the H. sapiens clade in which key features of modern morphology were established. Furthermore, it shows that the evolutionary processes behind the emergence of H. sapiens involved the whole African continent

    Bone growth dynamics of the facial skeleton and mandible in Gorilla gorilla and Pan troglodytes

    No full text
    Adult craniofacial morphology results from complex processes that involve growth by bone modelling and interactions of skeletal components to keep a functional and structural balance. Previous analyses of growth dynamics in humans revealed critical changes during late ontogeny explaining particular morphological features in our species. Data on bone modelling patterns from other primate species could help us to determine whether postnatal changes in the growth dynamics of the craniofacial complex are human specific or are shared with other primates. However, characterizations of bone modelling patterns through ontogeny in non-human hominids are scarce and restricted to isolated data on facial and mandibular regions. In the present study, we analyse the bone modelling patterns in an ontogenetic series of Pan and Gorilla to infer the growth dynamics of their craniofacial complex during postnatal development. Our results show that both Pan troglodytes and Gorilla gorilla are characterized by species-specific bone modelling patterns indicative of a mainly forward growth direction during postnatal development. Both species show minor but consistent ontogenetic changes in the distribution of bone modelling fields in specific regions of the face and mandible, in contrast to other regions which show more constant bone modelling patterns. In addition, we carry out a preliminary integrative study merging histological and geometric morphometric data. Both approaches yield highly complementary data, each analysis providing details on specific growth dynamics unavailable to the other. Moreover, geometric morphometric data show that ontogenetic variation in the modelling pattern of the mandibular ramus may be linked to sexual dimorphism.The authors declare that they have no conflict of interest. All necessary permits were obtained for the described study, which complied with all relevant regulations (Natural History Museum of London (UK, GB-TAF)—SYNTHESYS program).Peer Reviewe

    Early presence of Homo sapiens by 86-68 kyrs in Southeast Asia at Tam Pà Ling cave, Northern Laos.

    No full text
    Abstract The timing of the first arrival of Homo sapiens in East Asia from Africa and the degree to which they interbred with or replaced local archaic populations is controversial. Previous discoveries from Tam Pà Ling cave (Laos) identified H. sapiens in Southeast Asia by 46 kyr. We report on a new frontal bone (TPL 6) and slightly older tibial fragment (TPL 7) discovered in the deepest layers of TPL. Bayesian modeling of luminescence dating of sediments and U-series and combined U-series-ESR dating of mammalian teeth reveals a depositional sequence spanning ~ 86 kyr. TPL 6 confirms the presence of H. sapiens by 70 ± 3 kyr, and TPL 7 extends this range to 77 ± 9 kyr, supporting an early dispersal of H. sapiens into Southeast Asia. Geometric morphometric analyses of TPL 6 suggest descent from a gracile immigrant population rather than evolution from or admixture with local archaic populations

    Early presence of Homo sapiens in Southeast Asia by 86–68 kyr at Tam Pà Ling, Northern Laos

    No full text
    Abstract The timing of the first arrival of Homo sapiens in East Asia from Africa and the degree to which they interbred with or replaced local archaic populations is controversial. Previous discoveries from Tam Pà Ling cave (Laos) identified H. sapiens in Southeast Asia by at least 46 kyr. We report on a recently discovered frontal bone (TPL 6) and tibial fragment (TPL 7) found in the deepest layers of TPL. Bayesian modeling of luminescence dating of sediments and U-series and combined U-series-ESR dating of mammalian teeth reveals a depositional sequence spanning ~86 kyr. TPL 6 confirms the presence of H. sapiens by 70 ± 3 kyr, and TPL 7 extends this range to 77 ± 9 kyr, supporting an early dispersal of H. sapiens into Southeast Asia. Geometric morphometric analyses of TPL 6 suggest descent from a gracile immigrant population rather than evolution from or admixture with local archaic populations
    corecore