10 research outputs found

    Pharmacodynamics of Levofloxacin in a Murine Pneumonia Model of Pseudomonas aeruginosa Infection: Determination of Epithelial Lining Fluid Targets▿

    No full text
    The dose choice for Pseudomonas aeruginosa remains a matter of debate. The actual exposure targets required for multilog killing of organisms at the primary infection site have not been delineated. We studied Pseudomonas aeruginosa PAO1 using a murine model of pneumonia. We employed a large mathematical model to fit all the concentration-time data in plasma and epithelial lining fluid (ELF) as well as colony counts in lung simultaneously for all drug doses. Penetration into ELF was calculated to be approximately 77.7%, as indexed to the ratio of the area under the concentration-time curve for ELF (AUCELF) to the AUCplasma. We determined the ELF concentration-time profile required to drive a stasis response as well as 1-, 2-, or 3-log10(CFU/g) kill. AUC/MIC ratios of 12.4, 31.2, 62.8, and 127.6 were required to drive these bacterial responses. Emergence of resistance was seen only at the two lowest doses (three of five animals at 50 mg/kg [body weight] and one of five animals at 100 mg/kg). The low exposure targets were likely driven by a low mutational frequency to resistance. Bridging to humans was performed using Monte Carlo simulation. With a 750-mg levofloxacin dose, target attainment rates fell below 90% at 4 mg/liter, 1 mg/liter, and 0.5 mg/liter for 1-, 2-, and 3-log kills, respectively. Given the low exposure targets seen with this strain, we conclude that levofloxacin at a 750-mg dose is not adequate for serious Pseudomonas aeruginosa pneumonia as a single agent. More isolates need to be studied to make these observations more robust

    Dose Range Evaluation of Mycograb C28Y Variant (MYC123 C28Y), a Human Recombinant Antibody Fragment to Heat Shock Protein 90, In Combination with Amphotericin B-Desoxycholate for the Treatment of Murine Systemic Candidiasis

    No full text
    Systemic candidiasis causes significant mortality in patients despite amphotericin B (AMB) therapy. Mycograb C28Y variant, a human recombinant antibody fragment to heat shock protein-90, is closely related to Mycograb, which showed a survival advantage in combination with AMB in a phase 3 human trial. The Mycograb C28Y variant could potentially increase the antifungal effect of AMB. Method: The interaction between AMB-desoxycholate (DAMB) and the Mycograb C28Y variant was characterized in vitro by a checkerboard method. Quantitative cultures of kidneys, livers, and spleens of neutropenic mice with systemic Candida albicans infections were used to assess the in vivo interaction between 1.4 mg/kg/d of DAMB and 0.15, 1.5, and 15 mg/kg/d of the Mycograb C28Y variant after 1, 3, and 5 days of therapy. DAMB and Mycograb C28Y variant monotherapies, vehicle, and a no-treatment arm served as controls. Also, single- and multi-dose pharmacokinetics for the Mycograb C28Y variant were determined. Results: Indifference or synergy between DAMB and the Mycograb C28Y variant was seen in two trials by the checkerboard method. The pharmacokinetics of the Mycograb C28Y variant was best described by a 2-compartment model with a median serum t1/2α of ~0.198 h and a t1/2β of ~1.77 h. In mice, DAMB together with the Mycograb C28Y variant was no more effective than AMB alone (p > 0.05 by ANOVA). The Mycograb C28Y variant alone had no antifungal activity. Conclusion: The Mycograb C28Y variant in combination with DAMB offered no benefit over DAMB monotherapy in a neutropenic murine model of systemic candidiasis

    Once-Weekly Micafungin Therapy Is as Effective as Daily Therapy for Disseminated Candidiasis in Mice with Persistent Neutropenia

    No full text
    The effect of micafungin dose scheduling on the treatment of candidemia is unknown. Neutropenic mice with disseminated Candida glabrata infection were treated with single intraperitoneal micafungin doses of 0 to 100 mg/kg of body weight and sacrificed 7 days later. The maximal decline in kidney fungal burden was 5.8 log(10) CFU/g. A 1-week pharmacokinetic-pharmacodynamic study revealed a micafungin serum half-life of 6.13 h. In mice treated with ≥50 mg/kg, there was maximal fungal decline without regrowth during the 1-week dosing interval. Next, doses associated with 34% (34% effective dose [ED(34)]) and 50% (ED(50)) of maximal kill were administered at one of three dose schedules: a single dose at t = 0, two equal doses at t = 0 and t = 3.5 days, and 7 equal doses daily. Some mice received a single dose of 100 mg/kg. Fungal burden was examined on days 1, 5, and 7. In mice treated with the ED(34), microbial kill with the daily therapy initially lagged behind the intermittent doses but exceeded it by day 7. In mice treated with the ED(50), daily and intermittent doses had equivalent day 7 effects. In mice treated with 100 mg/kg, there was no regrowth. The relative likelihoods that the area under the concentration-time curve/MIC ratio was linked to microbial kill versus peak concentration/MIC ratio or time above the MIC was 10.3 and 10,161.2, respectively. In all the experiments, no paradoxical increase in fungal burden was observed with high micafungin doses. However, only a single Candida isolate was tested. Regimens that simulated micafungin concentration-time profiles in patients treated with a single micafungin dose of 1,400 mg once a week demonstrated maximal fungal decline. Once-weekly micafungin therapy is as efficacious as daily therapy in a murine model of disseminated candidiasis

    Impact of Different Carbapenems and Regimens of Administration on Resistance Emergence for Three Isogenic Pseudomonas aeruginosa Strains with Differing Mechanisms of Resistance▿

    No full text
    We compared drugs (imipenem and doripenem), doses (500 mg and 1 g), and infusion times (0.5 and 1.0 [imipenem], 1.0 and 4.0 h [doripenem]) in our hollow-fiber model, examining cell kill and resistance suppression for three isogenic strains of Pseudomonas aeruginosa PAO1. The experiments ran for 10 days. Serial samples were taken for total organism and resistant subpopulation counts. Drug concentrations were determined by high-pressure liquid chromatography-tandem mass spectrometry (LC/MS/MS). Free time above the MIC (time > MIC) was calculated using ADAPT II. Time to resistance emergence was examined with Cox modeling. Cell kill and resistance emergence differences were explained, in the main, by differences in potency (MIC) between doripenem and imipenem. Prolonged infusion increased free drug time > MIC and improved cell kill. For resistance suppression, the 1-g, 4-h infusion was able to completely suppress resistance for the full period of observation for the wild-type isolate. For the mutants, control was ultimately lost, but in all cases, this was the best regimen. Doripenem gave longer free time > MIC than imipenem and, therefore, better cell kill and resistance suppression. For the wild-type organism, the 1-g, 4-h infusion regimen is preferred. For organisms with resistance mutations, larger doses or addition of a second drug should be studied

    Dose Range Evaluation of Mycograb C28Y Variant, a Human Recombinant Antibody Fragment to Heat Shock Protein 90, in Combination with Amphotericin B-Desoxycholate for Treatment of Murine Systemic Candidiasis ▿

    No full text
    Systemic candidiasis causes significant mortality in patients despite amphotericin B (AMB) therapy. Mycograb C28Y variant, a human recombinant antibody fragment to heat shock protein 90, is closely related to Mycograb, which showed a survival advantage in combination with AMB in a phase III human trial. The Mycograb C28Y variant could potentially increase the antifungal effect of AMB. In our study, the interaction between AMB-desoxycholate (DAMB) and the Mycograb C28Y variant was characterized in vitro by using a checkerboard method. Quantitative cultures of kidneys, livers, and spleens of neutropenic mice with systemic Candida albicans infections were used to assess the in vivo interaction between 1.4 mg/kg of body weight/day of DAMB and 0.15, 1.5, and 15 mg/kg/day of the Mycograb C28Y variant after 1, 3, and 5 days of therapy. DAMB and Mycograb C28Y variant monotherapies, vehicle, and a no-treatment arm served as controls. Also, single- and multidose pharmacokinetics for the Mycograb C28Y variant were determined. Indifference or synergy between DAMB and the Mycograb C28Y variant was seen in two trials by the checkerboard method. The pharmacokinetics of the Mycograb C28Y variant was best described by a 2-compartment model with a median serum t1/2α of ∼0.198 h and a t1/2β of ∼1.77 h. In mice, DAMB together with the Mycograb C28Y variant was no more effective than AMB alone (P > 0.05 by analysis of variance). The Mycograb C28Y variant alone had no antifungal activity. We therefore conclude that the Mycograb C28Y variant in combination with DAMB offered no benefit over DAMB monotherapy in a neutropenic murine model of systemic candidiasis

    De novo mutations in KIF1A cause progressive encephalopathy and brain atrophy.

    No full text
    ObjectiveTo determine the cause and course of a novel syndrome with progressive encephalopathy and brain atrophy in children.MethodsClinical whole-exome sequencing was performed for global developmental delay and intellectual disability; some patients also had spastic paraparesis and evidence of clinical regression. Six patients were identified with de novo missense mutations in the kinesin gene KIF1A. The predicted functional disruption of these mutations was assessed in silico to compare the calculated conformational flexibility and estimated efficiency of ATP binding to kinesin motor domains of wild-type (WT) versus mutant alleles. Additionally, an in vitro microtubule gliding assay was performed to assess the effects of de novo dominant, inherited recessive, and polymorphic variants on KIF1A motor function.ResultsAll six subjects had severe developmental delay, hypotonia, and varying degrees of hyperreflexia and spastic paraparesis. Microcephaly, cortical visual impairment, optic neuropathy, peripheral neuropathy, ataxia, epilepsy, and movement disorders were also observed. All six patients had a degenerative neurologic course with progressive cerebral and cerebellar atrophy seen on sequential magnetic resonance imaging scans. Computational modeling of mutant protein structures when compared to WT kinesin showed substantial differences in conformational flexibility and ATP-binding efficiency. The de novo KIF1A mutants were nonmotile in the microtubule gliding assay.InterpretationDe novo mutations in KIF1A cause a degenerative neurologic syndrome with brain atrophy. Computational and in vitro assays differentiate the severity of dominant de novo heterozygous versus inherited recessive KIF1A mutations. The profound effect de novo mutations have on axonal transport is likely related to the cause of progressive neurologic impairment in these patients

    De novo mutations in KIF1A cause progressive encephalopathy and brain atrophy

    No full text
    OBJECTIVE: To determine the cause and course of a novel syndrome with progressive encephalopathy and brain atrophy in children. METHODS: Clinical whole-exome sequencing was performed for global developmental delay and intellectual disability; some patients also had spastic paraparesis and evidence of clinical regression. Six patients were identified with de novo missense mutations in the kinesin gene KIF1A. The predicted functional disruption of these mutations was assessed in silico to compare the calculated conformational flexibility and estimated efficiency of ATP binding to kinesin motor domains of wild-type (WT) versus mutant alleles. Additionally, an in vitro microtubule gliding assay was performed to assess the effects of de novo dominant, inherited recessive, and polymorphic variants on KIF1A motor function. RESULTS: All six subjects had severe developmental delay, hypotonia, and varying degrees of hyperreflexia and spastic paraparesis. Microcephaly, cortical visual impairment, optic neuropathy, peripheral neuropathy, ataxia, epilepsy, and movement disorders were also observed. All six patients had a degenerative neurologic course with progressive cerebral and cerebellar atrophy seen on sequential magnetic resonance imaging scans. Computational modeling of mutant protein structures when compared to WT kinesin showed substantial differences in conformational flexibility and ATP-binding efficiency. The de novo KIF1A mutants were nonmotile in the microtubule gliding assay. INTERPRETATION: De novo mutations in KIF1A cause a degenerative neurologic syndrome with brain atrophy. Computational and in vitro assays differentiate the severity of dominant de novo heterozygous versus inherited recessive KIF1A mutations. The profound effect de novo mutations have on axonal transport is likely related to the cause of progressive neurologic impairment in these patients

    2013 Atomic spectrometry update—A review of advances in X-ray fluorescence spectrometry

    No full text
    corecore