18 research outputs found

    An exploratory open-label multicentre phase I/II trial evaluating the safety and efficacy of postnatal or prenatal and postnatal administration of allogeneic expanded fetal mesenchymal stem cells for the treatment of severe osteogenesis imperfecta in infants and fetuses: The BOOSTB4 trial protocol

    Get PDF
    Introduction Severe osteogenesis imperfecta (OI) is a debilitating disease with no cure or sufficiently effective treatment. Mesenchymal stem cells (MSCs) have good safety profile, show promising effects and can form bone. The Boost Brittle Bones Before Birth (BOOSTB4) trial evaluates administration of allogeneic expanded human first trimester fetal liver MSCs (BOOST cells) for OI type 3 or severe type 4. Methods and analysis BOOSTB4 is an exploratory, open-label, multiple dose, phase I/II clinical trial evaluating safety and efficacy of postnatal (n=15) or prenatal and postnatal (n=3, originally n=15) administration of BOOST cells for the treatment of severe OI compared with a combination of historical (1-5/subject) and untreated prospective controls (≤30). Infants<18 months of age (originally<12 months) and singleton pregnant women whose fetus has severe OI with confirmed glycine substitution in COL1A1 or COL1A2 can be included in the trial. Each subject receives four intravenous doses of 3×10 6 /kg BOOST cells at 4 month intervals, with 48 (doses 1-2) or 24 (doses 3-4) hours in-patient follow-up, primary follow-up at 6 and 12 months after the last dose and long-term follow-up yearly until 10 years after the first dose. Prenatal subjects receive the first dose via ultrasound-guided injection into the umbilical vein within the fetal liver (16+0 to 35+6 weeks), and three doses postnatally. The primary outcome measures are safety and tolerability of repeated BOOST cell administration. The secondary outcome measures are number of fractures from baseline to primary and long-term follow-up, growth, change in bone mineral density, clinical OI status and biochemical bone turnover. Ethics and dissemination The trial is approved by Competent Authorities in Sweden, the UK and the Netherlands (postnatal only). Results from the trial will be disseminated via CTIS, ClinicalTrials.gov and in scientific open-access scientific journals. Trial registration numbers EudraCT 2015-003699-60, EUCT: 2023-504593-38-00, NCT03706482

    Microsporidiosis in a Brazilian University Hospital: case report Microsporidíase em Hospital Universitário no Brasil: relato de caso

    Get PDF
    This is the report on a patient with chronic diarrhea caused by microsporidia. He is married, infected with HIV and has low CD4 cell count. The diagnosis was established through stool parasite search using concentration methods and Gram - chromotrope staining technique. Ileum biopsy was also performed in this case. The etiological diagnosis may be established in a clinical laboratory, by chromotrope staining technique in routine microscopic examination of stool specimens.<br>Este é o relato de caso de doente com diarréia crônica causada por Microsporidia. O doente era homem, casado, infectado com HIV e tinha baixa taxa de linfócitos CD4+. O diagnóstico foi feito em exame de fezes utilizando métodos de concentração e técnica de coloração de Gram-Chromotrope. Biópsia de íleo também foi realizada neste caso. O diagnóstico etiológico pode ser feito em laboratório clínico, por técnicas de coloração baseada em cromotrope na rotina da observação microscópica direta

    Gangliosides of myelosupportive stroma cells are transferred to myeloid progenitors and are required for their survival and proliferation

    No full text
    In previous studies, we have shown that the myelopoiesis dependent upon myelosupportive stroma required production of growth factors and heparan-sulphate proteoglycans, as well as generation of a negatively charged sialidase-sensitive intercellular environment between the stroma and the myeloid progenitors. In the present study, we have investigated the production, distribution and role of gangliosides in an experimental model of in vitro myelopoiesis dependent upon AFT-024 murine liver-derived stroma. We used the FDC-P1 cell line, which is dependent upon GM-CSF (granulocyte/macrophage colony-stimulating factor) for both survival and proliferation, as a reporter system to monitor bioavailability and local activity of GM-CSF. G(M3) was the major ganglioside produced by stroma, but not by myeloid cells, and it was required for optimal stroma myelosupportive function. It was released into the supernatant and selectively incorporated into the myeloid progenitor cells, where it segregated into rafts in which it co-localized with the GM-CSF-receptor α chain. This ganglioside was also metabolized further by myeloid cells into gangliosides of the a and b series, similar to endogenous G(M3). In these cells, G(M1) was the major ganglioside and it was segregated at the interface by stroma and myeloid cells, partially co-localizing with the GM-CSF-receptor α chain. We conclude that myelosupportive stroma cells produce and secrete the required growth factors, the cofactors such as heparan sulphate proteoglycans, and also supply gangliosides that are transferred from stroma to target cells, generating on the latter ones specific membrane domains with molecular complexes that include growth factor receptors
    corecore