147 research outputs found

    Identification of Oocyst-Driven Toxoplasma gondii Infections in Humans and Animals through Stage-Specific Serology—Current Status and Future Perspectives

    Get PDF
    The apicomplexan zoonotic parasite Toxoplasma gondii has three infective stages: sporozoites in sporulated oocysts, which are shed in unsporulated form into the environment by infected felids; tissue cysts containing bradyzoites, and fast replicating tachyzoites that are responsible for acute toxoplasmosis. The contribution of oocysts to infections in both humans and animals is understudied despite being highly relevant. Only a few diagnostic antigens have been described to be capable of discriminating which parasite stage has caused an infection. Here we provide an extensive overview of the antigens and serological assays used to detect oocyst-driven infections in humans and animals according to the literature. In addition, we critically discuss the possibility to exploit the increasing knowledge of the T. gondii genome and the various ‘omics datasets available, by applying predictive algorithms, for the identification of new oocyst-specific proteins for diagnostic purposes. Finally, we propose a workflow for how such antigens and assays based on them should be evaluated to ensure reproducible and robust results.Peer Reviewe

    Screening for common eye diseases in the elderly with Optos ultra-wide-field scanning laser ophthalmoscopy: a pilot study with focus on ocular toxoplasmosis

    Get PDF
    Purpose Studies on the occurrence of ocular toxoplasmosis (OT) in a general population are rare. Therefore, we conducted this pilot study to assess whether a nonmydriatic ultra-wide-field (UWF) scanning laser ophthalmoscope (SLO) is suitable for a simple, rapid screening procedure. Methods The population of this cross-sectional study was randomly recruited from a cohort of hospital-based patients in an urban geriatric hospital. Ophthalmologic evaluation was performed on 201 eyes from 101 participants through nonmydriatic UWF-SLO (Optos Daytona) and assessed for suspicious lesions and other relevant ocular findings. All images were evaluated by two independent examiners. Individuals who presented lesions with a morphological appearance suggestive of OT underwent fundoscopy and serological analysis of Toxoplasma gondii-specific antibodies. Results The mean age of the study group was 76 years, and 63 (62%) were female. Despite many health restrictions, the SLO examination was carried out easily in this geriatric population. Three participants presented findings by SLO suspicious for T. gondii-related injury. Further clinical examination and serological investigation confirmed the diagnosis, with funduscopic evaluation and positive T. gondii ELISA testing. In addition, a high rate of arterial hypertension and dyslipidemias within the cohort led to a high incidence of vascular changes and age-related fundus findings. Conclusion In our study, we confirm that UWF-SLO technology is helpful in the rapid detection of peripheral retinal injuries in elderly patients such as OT and may be used as a routine screening tool

    Estimates of Toxoplasmosis Incidence Based on Healthcare Claims Data, Germany, 2011–2016

    Get PDF
    Toxoplasmosis is a zoonotic infection contracted through Toxoplasma gondii–contaminated food, soil, or water. Seroprevalence in Germany is high, but estimates of disease incidence are scarce. We investigated incidences for various toxoplasmosis manifestations using anonymized healthcare claims data from Germany for 2011–2016. Patients with a toxoplasmosis diagnosis during the annual observational period were considered incident. The estimated incidence was adjusted to the general population age/sex distribution. We estimated an annual average of 8,047 toxoplasmosis patients in Germany. The average incidence of non–pregnancy-associated toxoplasmosis patients was 9.6/100,000 population. The incidence was highest in 2011, at 10.6 (95% CI 9.4–12.6)/100,000 population, and lowest in 2016, at 8.0 (95% CI 7.0–9.4)/100,000 population. The average incidence of toxoplasmosis during pregnancy was 40.3/100,000 pregnancies. We demonstrate a substantial toxoplasmosis disease burden in Germany. Public health and food safety authorities should implement toxoplasmosis-specific prevention programs.Peer Reviewe

    Expanding the Known Repertoire of C-Type Lectin Receptors Binding to Toxoplasma gondii Oocysts Using a Modified High-Resolution Immunofluorescence Assay

    Get PDF
    The environmental stage of the apicomplexan Toxoplasma gondii oocyst is vital to its life cycle but largely understudied. Because oocysts are excreted only by infected felids, their availability for research is limited. We report the adaptation of an agarose-based method to immobilize minute amounts of oocysts to perform immunofluorescence assays. Agarose embedding allows high-resolution confocal microscopy imaging of antibodies binding to the oocyst surface as well as unprecedented imaging of intracellular sporocyst structures with Maclura pomifera agglutinin after on-slide permeabilization of the immobilized oocysts. To identify new possible molecules binding to the oocyst surface, we used this method to screen a library of C-type lectin receptor (CLR)-human IgG constant region fusion proteins from the group of related CLRs called the Dectin-1 cluster against oocysts. In addition to CLEC7A that was previously reported to decorate T. gondii oocysts, we present experimental evidence for specific binding of three additional CLRs to the surface of this stage. We discuss how these CLRs, known to be expressed on neutrophils, dendritic cells, or macrophages, could be involved in the early immune response by the host, such as oocyst antigen uptake in the intestine. In conclusion, we present a modified immunofluorescence assay technique that allows material-saving immunofluorescence microscopy with T. gondii oocysts in a higher resolution than previously published, which allowed us to describe three additional CLRs binding specifically to the oocyst surface. IMPORTANCE Knowledge of oocyst biology of Toxoplasma gondii is limited, not the least due to its limited availability. We describe a method that permits us to process minute amounts of oocysts for immunofluorescence microscopy without compromising their structural properties. This method allowed us to visualize internal structures of sporocysts by confocal microscopy in unprecedented quality. Moreover, the method can be used as a low- to medium-throughput method to screen for molecules interacting with oocysts, such as antibodies, or compounds causing structural damage to oocysts (i.e., disinfectants). Using this method, we screened a small library of C-type lectin receptors (CLRs) present on certain immune cells and found three CLRs able to decorate the oocyst wall of T. gondii and which were not known before to bind to oocysts. These tools will allow further study into oocyst wall composition and could also provoke experiments regarding immunological recognition of oocysts.Peer Reviewe

    BCKDH: the missing link in apicomplexan mitochondrial metabolism is required for full virulence of Toxoplasma gondii and Plasmodium berghei

    Get PDF
    While the apicomplexan parasites Plasmodium falciparum and Toxoplasma gondii are thought to primarily depend on glycolysis for ATP synthesis, recent studies have shown that they can fully catabolize glucose in a canonical TCA cycle. However, these parasites lack a mitochondrial isoform of pyruvate dehydrogenase and the identity of the enzyme that catalyses the conversion of pyruvate to acetyl-CoA remains enigmatic. Here we demonstrate that the mitochondrial branched chain ketoacid dehydrogenase (BCKDH) complex is the missing link, functionally replacing mitochondrial PDH in both T. gondii and P. berghei. Deletion of the E1a subunit of T. gondii and P. berghei BCKDH significantly impacted on intracellular growth and virulence of both parasites. Interestingly, disruption of the P. berghei E1a restricted parasite development to reticulocytes only and completely prevented maturation of oocysts during mosquito transmission. Overall this study highlights the importance of the molecular adaptation of BCKDH in this important class of pathogens

    In vitro maturation of Toxoplasma gondii bradyzoites in human myotubes and their metabolomic characterization

    Get PDF
    The apicomplexan parasite Toxoplasma gondii forms bradyzoite-containing tissue cysts that cause chronic and drug-tolerant infections. However, current in vitro models do not allow long-term culture of these cysts to maturity. Here, we developed a human myotube-based in vitro culture model of functionally mature tissue cysts that are orally infectious to mice and tolerate exposure to a range of antibiotics and temperature stresses. Metabolomic characterization of purified cysts reveals global changes that comprise increased levels of amino acids and decreased abundance of nucleobase- and tricarboxylic acid cycle-associated metabolites. In contrast to fast replicating tachyzoite forms of T. gondii these tissue cysts tolerate exposure to the aconitase inhibitor sodium fluoroacetate. Direct access to persistent stages of T. gondii under defined cell culture conditions will be essential for the dissection of functionally important host-parasite interactions and drug evasion mechanisms. It will also facilitate the identification of new strategies for therapeutic intervention.Peer Reviewe

    Erinnerung an W. Thielmann und Willingshausen

    Get PDF
    While the apicomplexan parasites Plasmodium falciparum and Toxoplasma gondii are thought to primarily depend on glycolysis for ATP synthesis, recent studies have shown that they can fully catabolize glucose in a canonical TCA cycle. However, these parasites lack a mitochondrial isoform of pyruvate dehydrogenase and the identity of the enzyme that catalyses the conversion of pyruvate to acetyl-CoA remains enigmatic. Here we demonstrate that the mitochondrial branched chain ketoacid dehydrogenase (BCKDH) complex is the missing link, functionally replacing mitochondrial PDH in both T. gondii and P. berghei. Deletion of the E1a subunit of T. gondii and P. berghei BCKDH significantly impacted on intracellular growth and virulence of both parasites. Interestingly, disruption of the P. berghei E1a restricted parasite development to reticulocytes only and completely prevented maturation of oocysts during mosquito transmission. Overall this study highlights the importance of the molecular adaptation of BCKDH in this important class of pathogens

    Water-Membrane Partition Thermodynamics of an Amphiphilic Lipopeptide: An Enthalpy-Driven Hydrophobic Effect

    Get PDF
    To shed light on the driving force for the hydrophobic effect that partitions amphiphilic lipoproteins between water and membrane, we carried out an atomically detailed thermodynamic analysis of a triply lipid modified H-ras heptapeptide anchor (ANCH) in water and in a DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) bilayer. Combining molecular mechanical and continuum solvent approaches with an improved technique for solute entropy calculation, we obtained an overall transfer free energy of ∼−13 kcal mol−1. This value is in qualitative agreement with free energy changes derived from a potential of mean force calculation and indirect experimental observations. Changes in free energies of solvation and ANCH conformational reorganization are unfavorable, whereas ANCH-DMPC interactions—especially van der Waals—favor insertion. These results are consistent with an enthalpy-driven hydrophobic effect, in accord with earlier calorimetric data on the membrane partition of other amphiphiles. Furthermore, structural and entropic analysis of molecular dynamics-generated ensembles suggests that conformational selection may play a hitherto unappreciated role in membrane insertion of lipid-modified peptides and proteins
    corecore