529 research outputs found

    Evaluation of the oxidative profile in leukocytes of jiu jtisu athletes

    Get PDF
    Oxidative stress is a process where there is an increase in reactive species, both oxygen and nitrogen. This can happen at both systemic and mitochondrial levels. One of the physiological conditions currently associated with oxidative stress is high-performance physical activity. In this way, it is possible to relate that this problem impacts on sports competitions, especially in Jiu-Jitsu, a growing sport in the world and which demands intense physical effort. Thus, the objective was to evaluate the level of mitochondrial and systemic oxidation in leukocytes of jiu-jitsu athletes. 20 adult men were selected for the control group and 13 athletes for the experimental group. A blood collection was performed to perform MTT and chemiluminescence assays for an analysis of mitochondrial and systemic oxidation, respectively. In addition, two reactive nitrogen species were measured: nitric oxide and peroxynitrite. The evaluation of the leukocyte reducing capacity by MTT showed that the athletes presented a greater reducing environment compared to the control. On the other hand, the chemiluminescence evaluation showed that the athletes' leukocytes showed greater systemic oxidation. There was an increase in both reactive nitrogen species in alteta leukocytes. Given this, it was possible to notice that the athletes presented greater systemic oxidative stress, but with mitochondria with better adaptive capacity to the cell's metabolic demands

    Impact of terrestrial mining and intensive agriculture in pollution of estuarine surface sediments: Spatial distribution of trace metals in the Gulf of Uraba, Colombia

    Get PDF
    The Gulf of Uraba (northwestern Colombia) is a geostrategic region, rich in biodiversity and natural resources. Its economy is mainly based on agribusinesses and mining activities. In this research is determined the impact of these activities in bottom surface sediments of the estuary. Thus, grain size, total organic carbon, total nitrogen, carbonates, Ag, Al, Ca, Cr, Cu, Fe, Hg, Mg, Mn, Ni, Pb and Zn concentrations from 17 surface sediment samples were obtained and enrichment factors (EF) as well as geo-accumulation indices (Igeo) were calculated to determine the contamination level in the gulf. EF and Igeo values revealed that the estuary is extremely contaminated with Ag and moderately contaminated with Zn. Therefore, the observed enrichment of Ag may be explained as a residue of the extraction of gold and platinum-group metals and the enrichment with Zn associated mainly to pesticides used in banana plantations. (C) 2016 Elsevier Ltd. All rights reserved

    The Glauber model and the heavy ion reaction cross section

    Get PDF
    We reexamine the Glauber model and calculate the total reaction cross section as a function of energy in the low and intermediate energy range, where many of the corrections in the model, are effective. The most significant effect in this energy range is by the modification of the trajectory due to the Coulomb field. The modification in the trajectory due to nuclear field is also taken into account in a self consistent way. The energy ranges in which particular corrections are effective, are quantified and it is found that when the center of mass energy of the system becomes 30 times the Coulomb barrier, none of the trajectory modification to the Glauber model is really required. The reaction cross sections for light and heavy systems, right from near coulomb barrier to intermediate energies have been calculated. The exact nuclear densities and free nucleon-nucleon (NN) cross sections have been used in the calculations. The center of mass correction which is important for light systems, has also been taken into account. There is an excellent agreement between the calculations with the modified Glauber model and the experimental data. This suggests that the heavy ion reactions in this energy range can be explained by the Glauber model in terms of free NN cross sections without incorporating any medium modification.Comment: RevTeX, 21 pages including 9 Postscript figures, submitted to Phys. Rev.

    Color Transparency Effects in Electron Deuteron Interactions at Intermediate Q^2

    Full text link
    High momentum transfer electrodisintegration of polarized and unpolarized deuterium targets, d(e,ep)nd(e,e'p)n is studied. We show that the importance of final state interactions-FSI, occuring when a knocked out nucleon interacts with the other nucleon, depends strongly on the momentum of the spectator nucleon. In particular, these FSI occur when the essential contributions to the scattering amplitude arise from internucleon distances 1.5 fm\sim 1.5~fm. But the absorption of the high momentum γ\gamma^* may produce a point like configuration, which evolves with time. In this case, the final state interactions probe the point like configuration at the early stage of its evolution. The result is that significant color transparency effects, which can either enhance or suppress computed cross sections, are predicted to occur for 4GeV2Q2 10 (GeV/c)2\sim 4 GeV^2 \ge Q^2\leq~10~(GeV/c)^2.Comment: 37 pages LaTex, 12 uuencoded PostScript Figures as separate file, to be published in Z.Phys.

    Metastable SUSY Breaking, de Sitter Moduli Stabilisation and K\"ahler Moduli Inflation

    Full text link
    We study the influence of anomalous U(1) symmetries and their associated D-terms on the vacuum structure of global field theories once they are coupled to N=1 supergravity and in the context of string compactifications with moduli stabilisation. In particular, we focus on a IIB string motivated construction of the ISS scenario and examine the influence of one additional U(1) symmetry on the vacuum structure. We point out that in the simplest one-Kahler modulus compactification, the original ISS vacuum gets generically destabilised by a runaway behaviour of the potential in the modulus direction. In more general compactifications with several Kahler moduli, we find a novel realisation of the LARGE volume scenario with D-term uplifting to de Sitter space and both D-term and F-term supersymmetry breaking. The structure of soft supersymmetry breaking terms is determined in the preferred scenario where the standard model cycle is not stabilised non-perturbatively and found to be flavour universal. Our scenario also provides a purely supersymmetric realisation of Kahler moduli (blow-up and fibre) inflation, with similar observational properties as the original proposals but without the need to include an extra (non-SUSY) uplifting term.Comment: 38 pages, 8 figures. v2: references added, minor correction

    Holographic dual of the Standard Model on the throat

    Full text link
    We apply recent techniques to construct geometries, based on local Calabi-Yau manifolds, leading to warped throats with 3-form fluxes in string theory, with interesting structure at their bottom. We provide their holographic dual description in terms of RG flows for gauge theories with almost conformal duality cascades and infrared confinement. We describe a model of a throat with D-branes at its bottom, realizing a 3-family Standard Model like chiral sector. We provide the explicit holographic dual gauge theory RG flow, and describe the appearance of the SM degrees of freedom after confinement. As a second application, we describe throats within throats, namely warped throats with discontinuous warp factor in different regions of the radial coordinate, and discuss possible model building applications.Comment: 46 pages, 21 figures, reference adde

    Monoketonic Curcuminoid Lidocaine Co Deliver Using Thermosensitive Organogels From Drug Synthesis to Epidermis Structural Studies

    Get PDF
    Organogels ORGs are remarkable matrices due to their versatile chemical composition and straightforward preparation. This study proposes the development of ORGs as dual drug carrier systems, considering the application of synthetic monoketonic curcuminoid m CUR and lidocaine LDC to treat topical inflammatory lesions. The monoketone curcuminoid m CUR was synthesized by using an innovative method via a NbCl5 acid catalysis. ORGs were prepared by associating an aqueous phase composed of Pluronic F127 and LDC hydrochloride with an organic phase comprising isopropyl myristate IPM , soy lecithin LEC , and the synthesized m CUR. Physicochemical characterization was performed to evaluate the influence of the organic phase on the ORGs supramolecular organization, permeation profiles, cytotoxicity, and epidermis structural characteristics. The physico chemical properties of the ORGs were shown to be strongly dependent on the oil phase constitution. Results revealed that the incorporation of LEC and m CUR shifted the sol gel transition temperature, and that the addition of LDC enhanced the rheological G amp; 8242; G amp; 8243; ratio to higher values compared to original ORGs. Consequently, highly structured gels lead to gradual and controlled LDC permeation profiles from the ORG formulations. Porcine ear skin epidermis was treated with ORGs and evaluated by infrared spectroscopy FTIR , where the stratum corneum lipids were shown to transition from a hexagonal to a liquid crystal phase. Quantitative optical coherence tomography OCT analysis revealed that LEC and m CUR additives modify skin structuring. Data from this study pointed ORGs as promising formulations for skin deliver

    Genome sequence and effectorome of Moniliophthora perniciosa and Moniliophthora roreri subpopulations

    Get PDF
    Background: The hemibiotrophic pathogens Moniliophthora perniciosa (witches' broom disease) and Moniliophthora roreri (frosty pod rot disease) are among the most important pathogens of cacao. Moniliophthora perniciosa has a broad host range and infects a variety of meristematic tissues in cacao plants, whereas M. roreri infects only pods of Theobroma and Herrania genera. Comparative pathogenomics of these fungi is essential to understand Moniliophthora infection strategies, therefore the detection and in silico functional characterization of effector candidates are important steps to gain insight on their pathogenicity. Results: Candidate secreted effector proteins repertoire were predicted using the genomes of five representative isolates of M. perniciosa subpopulations (three from cacao and two from solanaceous hosts), and one representative isolate of M. roreri from Peru. Many putative effectors candidates were identified in M. perniciosa: 157 and 134 in cacao isolates from Bahia, Brazil; 109 in cacao isolate from Ecuador, 92 and 80 in wild solanaceous isolates from Minas Gerais (Lobeira) and Bahia (Caiçara), Brazil; respectively. Moniliophthora roreri showed the highest number of effector candidates, a total of 243. A set of eight core effectors were shared among all Moniliophthora isolates, while others were shared either between the wild solanaceous isolates or among cacao isolates. Mostly, candidate effectors of M. perniciosa were shared among the isolates, whereas in M. roreri nearly 50% were exclusive to the specie. In addition, a large number of cell wall-degrading enzymes characteristic of hemibiotrophic fungi were found. From these, we highlighted the proteins involved in cell wall modification, an enzymatic arsenal that allows the plant pathogens to inhabit environments with oxidative stress, which promotes degradation of plant compounds and facilitates infection. Conclusions: The present work reports six genomes and provides a database of the putative effectorome of Moniliophthora, a first step towards the understanding of the functional basis of fungal pathogenicity. © 2018 The Author(s).This work was done in the frame of the International Consortium in Advanced Biology (CIBA; https://www.ciba-network.org). The authors thank the Molecular Plant Pathology Laboratory and the Plant Pathology Laboratory at INIAP personnel for their assistance in obtaining the DNAs, Dr Carmen Suarez Capello for her kind assistance in Ecuador, and the Núcleo de Biologia Computacional e Gestão de Informações Biotecnológicas - UESC (NBCGIB), and Copenhague University for providing bioinformatics facility. Data sets were processed in sagarana HPC cluster, CPAD-ICB-UFMG. The authors would also like to thank Dr. Claudia Fortes Ferreira (Embrapa CNPMF, Brazil) and Dr. Raul Renné Valle (CEPLAC/CEPEC, Brazil) for English language revision. We are also grateful to Ivanna Michelle Meraz Pérez for helping translating an early version of this manuscript and to the anonymous reviewers who provided helpful comments to our work. KPG, FM and CPP were supported by research fellowship Pq-1 from CNPq. National Council for Scientific Development (CNPq) n° 311759/2014–9. CSB acknowledges FAPESB (Foundation for Research Support of the State of Bahia) for supporting her with a research assistantship during her Master’s Programme

    Time-integrated luminosity recorded by the BABAR detector at the PEP-II e+e- collider

    Get PDF
    This article is the Preprint version of the final published artcile which can be accessed at the link below.We describe a measurement of the time-integrated luminosity of the data collected by the BABAR experiment at the PEP-II asymmetric-energy e+e- collider at the ϒ(4S), ϒ(3S), and ϒ(2S) resonances and in a continuum region below each resonance. We measure the time-integrated luminosity by counting e+e-→e+e- and (for the ϒ(4S) only) e+e-→μ+μ- candidate events, allowing additional photons in the final state. We use data-corrected simulation to determine the cross-sections and reconstruction efficiencies for these processes, as well as the major backgrounds. Due to the large cross-sections of e+e-→e+e- and e+e-→μ+μ-, the statistical uncertainties of the measurement are substantially smaller than the systematic uncertainties. The dominant systematic uncertainties are due to observed differences between data and simulation, as well as uncertainties on the cross-sections. For data collected on the ϒ(3S) and ϒ(2S) resonances, an additional uncertainty arises due to ϒ→e+e-X background. For data collected off the ϒ resonances, we estimate an additional uncertainty due to time dependent efficiency variations, which can affect the short off-resonance runs. The relative uncertainties on the luminosities of the on-resonance (off-resonance) samples are 0.43% (0.43%) for the ϒ(4S), 0.58% (0.72%) for the ϒ(3S), and 0.68% (0.88%) for the ϒ(2S).This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat à l’Energie Atomique and Institut National de Physique Nucléaire et de Physiquedes Particules (France), the Bundesministerium für Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Ciencia e Innovación (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union) and the A.P. Sloan Foundation (USA)
    corecore