51 research outputs found

    Serum indoxyl sulfate concentrations associate with progression of chronic kidney disease in children

    Get PDF
    The uremic toxins indoxyl sulfate (IS) and p-cresyl sulfate (pCS) accumulate in patients with chronic kidney disease (CKD) as a consequence of altered gut microbiota metabolism and a decline in renal excretion. Despite of solid experimental evidence for nephrotoxic effects, the impact of uremic toxins on the progression of CKD has not been investigated in representative patient cohorts. In this analysis, IS and pCS serum concentrations were measured in 604 pediatric participants (mean eGFR of 27 ± 11 ml/min/1.73m2) at enrolment into the prospective Cardiovascular Comorbidity in Children with CKD study. Associations with progression of CKD were analyzed by Kaplan-Meier analyses and Cox proportional hazard models. During a median follow up time of 2.2 years (IQR 4.3-0.8 years), the composite renal survival endpoint, defined as 50% loss of eGFR, or eGFR <10ml/min/1.73m2 or start of renal replacement therapy, was reached by 360 patients (60%). Median survival time was shorter in patients with IS and pCS levels in the highest versus lowest quartile for both IS (1.5 years, 95%CI [1.1,2.0] versus 6.0 years, 95%CI [5.0,8.4]) and pCS (1.8 years, 95%CI [1.5,2.8] versus 4.4 years, 95%CI [3.4,6.0]). Multivariable Cox regression disclosed a significant association of IS, but not pCS, with renal survival, which was independent of other risk factors including baseline eGFR, proteinuria and blood pressure. In this exploratory analysis we provide the first data showing a significant association of IS, but not pCS serum concentrations with the progression of CKD in children, independent of other known risk factors. In the absence of comorbidities, which interfere with serum levels of uremic toxins, such as diabetes, obesity and metabolic syndrome, these results highlight the important role of uremic toxins and accentuate the unmet need of effective elimination strategies to lower the uremic toxin burden and abate progression of CKD

    Wolfram Syndrome: New Mutations, Different Phenotype

    Get PDF
    BACKGROUND: Wolfram Syndrome (WS) is an autosomal recessive neurodegenerative disorder characterized by Diabetes Insipidus, Diabetes Mellitus, Optic Atrophy, and Deafness identified by the acronym "DIDMOAD". The WS gene, WFS1, encodes a transmembrane protein called Wolframin, which recent evidence suggests may serve as a novel endoplasmic reticulum calcium channel in pancreatic β-cells and neurons. WS is a rare disease, with an estimated prevalence of 1/550.000 children, with a carrier frequency of 1/354. The aim of our study was to determine the genotype of WS patients in order to establish a genotype/phenotype correlation. METHODOLOGY/PRINCIPAL FINDINGS: We clinically evaluated 9 young patients from 9 unrelated families (6 males, 3 females). Basic criteria for WS clinical diagnosis were coexistence of insulin-treated diabetes mellitus and optic atrophy occurring before 15 years of age. Genetic analysis for WFS1 was performed by direct sequencing. Molecular sequencing revealed 5 heterozygous compound and 3 homozygous mutations. All of them were located in exon 8, except one in exon 4. In one proband only an heterozygous mutation (A684V) was found. Two new variants c.2663 C>A and c.1381 A>C were detected. CONCLUSIONS/SIGNIFICANCE: Our study increases the spectrum of WFS1 mutations with two novel variants. The male patient carrying the compound mutation [c.1060_1062delTTC]+[c.2663 C>A] showed the most severe phenotype: diabetes mellitus, optic atrophy (visual acuity 5/10), deafness with deep auditory bilaterally 8000 Hz, diabetes insipidus associated to reduced volume of posterior pituitary and pons. He died in bed at the age of 13 years. The other patient carrying the compound mutation [c.409_424dup16]+[c.1381 A>C] showed a less severe phenotype (DM, OA)

    Clinical Characteristics and Treatment Patterns of Children and Adults With IgA Nephropathy or IgA Vasculitis: Findings From the CureGN Study

    Get PDF
    Introduction: The Cure Glomerulonephropathy Network (CureGN) is a 66-center longitudinal observational study of patients with biopsy-confirmed minimal change disease, focal segmental glomerulosclerosis, membranous nephropathy, or IgA nephropathy (IgAN), including IgA vasculitis (IgAV). This study describes the clinical characteristics and treatment patterns in the IgA cohort, including comparisons between IgAN versus IgAV and adult versus pediatric patients. Methods: Patients with a diagnostic kidney biopsy within 5 years of screening were eligible to join CureGN. This is a descriptive analysis of clinical and treatment data collected at the time of enrollment. Results: A total of 667 patients (506 IgAN, 161 IgAV) constitute the IgAN/IgAV cohort (382 adults, 285 children). At biopsy, those with IgAV were younger (13.0 years vs. 29.6 years, P < 0.001), more frequently white (89.7% vs. 78.9%, P = 0.003), had a higher estimated glomerular filtration rate (103.5 vs. 70.6 ml/min per 1.73 m2, P < 0.001), and lower serum albumin (3.4 vs. 3.8 g/dl, P < 0.001) than those with IgAN. Adult and pediatric individuals with IgAV were more likely than those with IgAN to have been treated with immunosuppressive therapy at or prior to enrollment (79.5% vs. 54.0%, P < 0.001). Conclusion: This report highlights clinical differences between IgAV and IgAN and between children and adults with these diagnoses. We identified differences in treatment with immunosuppressive therapies by disease type. This description of baseline characteristics will serve as a foundation for future CureGN studies

    The genetic architecture of membranous nephropathy and its potential to improve non-invasive diagnosis

    Get PDF
    Membranous Nephropathy (MN) is a rare autoimmune cause of kidney failure. Here we report a genome-wide association study (GWAS) for primary MN in 3,782 cases and 9,038 controls of East Asian and European ancestries. We discover two previously unreported loci, NFKB1 (rs230540, OR = 1.25, P = 3.4 × 10-12) and IRF4 (rs9405192, OR = 1.29, P = 1.4 × 10-14), fine-map the PLA2R1 locus (rs17831251, OR = 2.25, P = 4.7 × 10-103) and report ancestry-specific effects of three classical HLA alleles: DRB1*1501 in East Asians (OR = 3.81, P = 2.0 × 10-49), DQA1*0501 in Europeans (OR = 2.88, P = 5.7 × 10-93), and DRB1*0301 in both ethnicities (OR = 3.50, P = 9.2 × 10-23 and OR = 3.39, P = 5.2 × 10-82, respectively). GWAS loci explain 32% of disease risk in East Asians and 25% in Europeans, and correctly re-classify 20-37% of the cases in validation cohorts that are antibody-negative by the serum anti-PLA2R ELISA diagnostic test. Our findings highlight an unusual genetic architecture of MN, with four loci and their interactions accounting for nearly one-third of the disease risk

    Urine Proteome Biomarkers in Kidney Diseases. I. Limits, Perspectives, and First Focus on Normal Urine

    No full text
    Urine proteome is a potential source of information in renal diseases, and it is considered a natural area of investigation for biomarkers. Technology developments have markedly increased the power analysis on urinary proteins, and it is time to confront methodologies and results of major studies on the topics. This is a first part of a series of reviews that will focus on the urine proteome as a site for detecting biomarkers of renal diseases; the theme of the first review concerns methodological aspects applied to normal urine. Main issues are techniques for urine pretreatment, separation of exosomes, use of combinatorial peptide ligand libraries, mass spectrometry approaches, and analysis of data sets. Available studies show important differences, suggesting a major confounding effect of the technologies utilized for analysis. The objective is to obtain consensus about which approaches should be utilized for studying urine proteome in renal diseases

    Effect of Chlorine Dioxide and Ascorbic Acid on Enzymatic Browning and Shelf Life of Fresh-Cut Red Delicious and Granny Smith Apples

    No full text
    In this work, we tested the hypothesis that ascorbic acid (AA) reduces browning of fresh-cut apples (Red Delicious, RD, and Granny Smith, GS), and we investigated the impact of AA on phenylpropanoid metabolism of RD and GS. Apple slices were dipped in a solution of 100mg/L of chlorine dioxide (ClO2) and ClO2+3% AA and stored at 4C for 96h. Flesh firmness, solid soluble content and browning index, total phenols and flavonoids, and the activity of peroxidase and polyphenol oxidase were monitored upon storage (0, 48 and 96h). Our results demonstrated that GS is less sensitive to browning and thus more suitable for minimally processed produce. Ascorbate reduces the browning index also in RD, a cultivar largely appreciated by consumers but more prone to browning. AA likely contrasts browning appearance by interacting with peroxidase and polyphenol oxidase and/or promoting the regeneration of phenols and flavonoids. Practical Applications: Browning of fresh-cut apple is one of the main problems that limit the shelf life of this type of produce. Given that this produce is highly appreciated by consumers, different antibrowning treatments have been tested to extend the shelf life of fresh-cut apple. We found that treatment with 100mg/L of ClO2+3% of ascorbic acid significantly reduces the browning appearance in apple slices. Browning was also reduced in Red Delicious cultivar that is more prone than Granny Smith to this phenomenon, but that is highly appreciated by consumers

    An Update on Antibodies to Necleosome Components as Biomarkers of Sistemic Lupus Erythematosus and of Lupus Flares

    No full text
    Systemic lupus erythematosus (SLE) is an autoimmune disease with variable clinical expression. It is a potentially devastating condition affecting mostly women and leading to clinically unpredictable outcomes. Remission and flares may, in fact, alternate over time and a mild involvement limited to few articular sites may be followed by severe and widespread organ damage. SLE is the prototype of any autoimmune condition and has, for this reason, attracted the interest of basic immunologists. Therapies have evolved over time and clinical prognosis has, in parallel, been improved. What clinicians still lack is the possibility to use biomarkers of the disease as predictors of outcome and, in this area, several studies are trying to find solutions. Circulating autoantibodies are clearly a milestone of clinical research and the concrete possibility is to integrate, in the future, classical markers of activation (like C3) with target organ autoantibodies. Anti-dsDNA antibodies represent a basic point in any predictive attempt in SLE and should be considered the benchmark for any innovative proposal in the wide field of target organ pathologies related to SLE. DNA is part of the nucleosome that is the basic unit of chromatin. It consists of DNA wrapped around a histone octamer made of 2 copies each of Histone 2A, 2B, 3, and 4. The nucleosome has a plastic organization that varies over time and has the potential to stimulate the formation of antibodies directed to the whole structure (anti-nucleosome) or its parts (anti-dsDNA and anti-Histones). Here, we present an updated review of the literature on antibodies directed to the nucleosome and the nucleosome constituents, i.e., DNA and Histones. Wetriedto merge the data first published more than twenty years ago with more recent results to create a balanced bridge between old dogma and more recent research that could serve as a stimulus to reconsider mechanisms for SLE. The formation of large networks would provide the chance of studying large cohorts of patients and confirm what already presented in small sample size during the last years
    • …
    corecore