25 research outputs found

    Sylvian fissure and parietal anatomy in children with autism spectrum disorder

    Get PDF
    Autism spectrum disorder (ASD) is characterized by deficits in social functioning and language and communication, with restricted interests or stereotyped behaviors. Anatomical differences have been found in the parietal cortex in children with ASD, but parietal subregions and associations between Sylvian fissure (SF) and parietal anatomy have not been explored. In this study, SF length and anterior and posterior parietal volumes were measured on MRI in 30 right-handed boys with ASD and 30 right-handed typically developing boys (7–14 years), matched on age and non-verbal IQ. There was leftward SF and anterior parietal asymmetry, and rightward posterior parietal asymmetry, across groups. There were associations between SF and parietal asymmetries, with slight group differences. Typical SF asymmetry was associated with typical anterior and posterior parietal asymmetry, in both groups. In the atypical SF asymmetry group, controls had atypical parietal asymmetry, whereas in ASD there were more equal numbers of individuals with typical as atypical anterior parietal asymmetry. We did not find significant anatomical-behavioral associations. Our findings of more individuals in the ASD group having a dissociation between cortical asymmetries warrants further investigation of these subgroups and emphasizes the importance of investigating anatomical relationships in addition to group differences in individual regions.This study was supported by a program project grant from the National Institute on Deafness and Other Communication Disorders (U19 DC 03610), which is part of the NICHD/NIDCD funded Collaborative Programs on Excellence in Autism, as well as funding for the GCRC at Boston University School of Medicine (M01-RR0533). We thank all of our research assistants for help in collecting the data and Andrew Silver, Melanee Schuring, Danielle Delosh, and Jeremy Siegal for completing the total hemisphere measurements. We also extend our sincere gratitude to the children and families who participated in this study. (U19 DC 03610 - National Institute on Deafness and Other Communication Disorders; NICHD/NIDCD; M01-RR0533 - Boston University School of Medicine)Published versio

    Sylvian Fissure and Parietal Anatomy in Children with Autism Spectrum Disorder

    Get PDF
    Autism spectrum disorder (ASD) is characterized by deficits in social functioning and language and communication, with restricted interests or stereotyped behaviors. Anatomical differences have been found in the parietal cortex in children with ASD, but parietal subregions and associations between Sylvian fissure (SF) and parietal anatomy have not been explored. In this study, SF length and anterior and posterior parietal volumes were measured on MRI in 30 right-handed boys with ASD and 30 right-handed typically developing boys (7–14 years), matched on age and non-verbal IQ. There was leftward SF and anterior parietal asymmetry, and rightward posterior parietal asymmetry, across groups. There were associations between SF and parietal asymmetries, with slight group differences. Typical SF asymmetry was associated with typical anterior and posterior parietal asymmetry, in both groups. In the atypical SF asymmetry group, controls had atypical parietal asymmetry, whereas in ASD there were more equal numbers of individuals with typical as atypical anterior parietal asymmetry. We did not find significant anatomical-behavioral associations. Our findings of more individuals in the ASD group having a dissociation between cortical asymmetries warrants further investigation of these subgroups and emphasizes the importance of investigating anatomical relationships in addition to group differences in individual regions

    Lobar Asymmetries in Subtypes of Dyslexic and Control Subjects

    Get PDF
    ABSTRACT Reading involves phonologic decoding, in which readers ''sound out'' a word; orthographic decoding, in which readers recognize a word visually, as in ''sight reading''; and comprehension. Because reading can involve multiple processes, dyslexia might be a heterogeneous disorder. This study investigated behavior and gross lobar anatomy in subtypes of dyslexic and control subjects. Subjects aged 18 to 25 years with identified reading problems and a group of healthy controls were given cognitive and behavioral tests and volumetric brain magnetic resonance imaging (MRI). Because atypical cerebral laterality has been proposed as a potential neural risk for dyslexia, dyslexic and control subjects were compared on anatomy of gross lobar regions. On asymmetry quotients, no significant differences were found between groups. Examination of the percentage of total brain volume of each structure revealed that control and dyslexic subjects were significantly different (P 5 .018). Dyslexic subjects had a larger percentage of brain volume than did the controls in the areas of total prefrontal (P 5 .003; 9.30% larger) and superior prefrontal (P 5 .004; 11.48% larger region). A Pearson correlation was performed to investigate whether a relationship existed between behavioral measures and either volumes of total prefrontal and total occipital regions or asymmetry quotients. A significant positive relationship between the left total occipital and word identification performance existed (R 5 .452, P 5 .045). Because it is believed by some that dyslexia occurs in varying degrees of severity, and because one of the research questions in this study is whether anatomy relates to severity or to distinct biologic groups, subjects were grouped according to both the nature and distinct pattern of reading or language performance and the degree of deficit. A battery of reading tests revealed five clinical subgroups of control (two) and dyslexic (three) subjects. These subgroups were statistically different on all cognitive and behavioral measures. When asymmetry was investigated across subgroups, significant differences betwee

    Human subcortical brain asymmetries in 15,847 people worldwide reveal effects of age and sex

    Get PDF
    The two hemispheres of the human brain differ functionally and structurally. Despite over a century of research, the extent to which brain asymmetry is influenced by sex, handedness, age, and genetic factors is still controversial. Here we present the largest ever analysis of subcortical brain asymmetries, in a harmonized multi-site study using meta-analysis methods. Volumetric asymmetry of seven subcortical structures was assessed in 15,847 MRI scans from 52 datasets worldwide. There were sex differences in the asymmetry of the globus pallidus and putamen. Heritability estimates, derived from 1170 subjects belonging to 71 extended pedigrees, revealed that additive genetic factors influenced the asymmetry of these two structures and that of the hippocampus and thalamus. Handedness had no detectable effect on subcortical asymmetries, even in this unprecedented sample size, but the asymmetry of the putamen varied with age. Genetic drivers of asymmetry in the hippocampus, thalamus and basal ganglia may affect variability in human cognition, including susceptibility to psychiatric disorders

    Speech and Gesture Are Mediated by Independent Systems

    No full text
    Arbib suggests that language emerged in direct relation to manual gestural communication, that Broca\u27s area participates in producing and imitating gestures, and that emotional facial expressions contributed to gesture-language coevolution. We discuss functional and structural evidence supporting localization of the neuronal modules controlling limb praxis, speech and language, and emotional communication. Current evidence supports completely independent limb praxis and speech/laguage systems

    Speech and gesture are mediated by independent systems

    No full text
    corecore