53 research outputs found

    Young carers, mental health and psychosocial wellbeing: A realist synthesis

    Get PDF
    Growing evidence demonstrates that the mental and psychosocial health impacts of caring vary significantly for individual children, depending on who they are, the person that they care for, their responsibilities and the wider family situation. Although individual studies have made progress in identifying the range of impacts, there is a lack of clarity around which impacts affect who and in what circumstances. This synthesis, based on RAMESES realist protocols, aims to increase clarity concerning how and why the mental and psychosocial health impacts of caring for a family member vary for different children. There were 12 391 unique search results screened at title, abstract and full-paper levels. Forty-four retained studies were analysed, resulting in the development of a model with 17 context-mechanism-outcome configurations. The model divides the configurations into three interlinking domains. The caregiving responsibilities domain considers how the impacts of caring vary with the circumstances of the individual young carer, the person they care for and their family. The identity domain details the development of a caring identity that potentially mitigates the negative effects of caring and enables positive benefits. The support domain concerns the support provided from family, community and services that, depending on quality, can mitigate or exacerbate the impacts of caring. Support also moderates the care identity by affecting self-perception of the caring role. The model has the potential to inform the development of interventions that target particular mechanisms to enable positive change for young carers. This potential can be enhanced by further research to test the model, with a focus on refining configurations where less evidence is available. There is a particular need to focus on identification which is under-represented in the model as both a mechanism and a contextual factor due to unidentified young carers being largely absent from past researc

    Asynchronous food-web pathways could buffer the response of Serengeti predators to El Niño southern oscillation

    Get PDF
    Understanding how entire ecosystems maintain stability in the face of climatic and human disturbance is one of the most fundamental challenges in ecology. Theory suggests that a crucial factor determining the degree of ecosystem stability is simply the degree of synchrony with which different species in ecological food webs respond to environmental stochasticity. Ecosystems in which all food-web pathways are affected similarly by external disturbance should amplify variability in top carnivore abundance over time due to population interactions, whereas ecosystems in which a large fraction of pathways are nonresponsive or even inversely responsive to external disturbance will have more constant levels of abundance at upper trophic levels. To test the mechanism underlying this hypothesis, we used over half a century of demographic data for multiple species in the Serengeti (Tanzania) ecosystem to measure the degree of synchrony to variation imposed by an external environmental driver, the El Niño Southern Oscillation (ENSO). ENSO effects were mediated largely via changes in dry-season vs. wet-season rainfall and consequent changes in vegetation availability, propagating via bottom-up effects to higher levels of the Serengeti food web to influence herbivores, predators and parasites. Some species in the Serengeti food web responded to the influence of ENSO in opposite ways, whereas other species were insensitive to variation in ENSO. Although far from conclusive, our results suggest that a diffuse mixture of herbivore responses could help buffer top carnivores, such as Serengeti lions, from variability in climate. Future global climate changes that favor some pathways over others, however, could alter the effectiveness of such processes in the future

    Finite one dimensional impenetrable Bose systems: Occupation numbers

    Full text link
    Bosons in the form of ultra cold alkali atoms can be confined to a one dimensional (1d) domain by the use of harmonic traps. This motivates the study of the ground state occupations λi\lambda_i of effective single particle states ϕi\phi_i, in the theoretical 1d impenetrable Bose gas. Both the system on a circle and the harmonically trapped system are considered. The λi\lambda_i and ϕi\phi_i are the eigenvalues and eigenfunctions respectively of the one body density matrix. We present a detailed numerical and analytic study of this problem. Our main results are the explicit scaled forms of the density matrices, from which it is deduced that for fixed ii the occupations λi\lambda_i are asymptotically proportional to N\sqrt{N} in both the circular and harmonically trapped cases.Comment: 22 pages, 8 figures (.eps), uses REVTeX

    Integral Representations of the Macdonald Symmetric Functions

    Full text link
    Multiple-integral representations of the (skew-)Macdonald symmetric functions are obtained. Some bosonization schemes for the integral representations are also constructed.Comment: LaTex 21page

    Effects of temperature at constant air dew point on leaf carboxylation efficiency and CO 2 compensation point of different leaf types

    Full text link
    The effect of temperature on photosynthesis at constant water-vapor pressure in the air was investigated using two sclerophyll species, Arbutus unedo and Quercus suber , and one mesophytic species, Spinacia oleracea . Photosynthesis and transpiration were measured over a range of temperatures, 20–39° C. The external concentration of CO 2 was varied from 340 μbar to near CO 2 compensation. The initial slope (carboxylation efficiency, CE) of the photosynthetic response to intercellular CO 2 concentration, the CO 2 compensation point (Γ), and the extrapolated rate of CO 2 released into CO 2 -free air ( R i ) were calculated. At an external CO 2 concentration of 320–340 μbar CO 2 , photosynthesis decreased with temperature in all species. The effect of temperature on Γ was similar in all species. While CE in S. oleracea changed little with temperature, CE decreased by 50% in Q. suber as temperature increased from 25 to 34° C. Arbutus unedo also exhibited a decrease in CE at higher temperatures but not as marked as Q. suber . The absolut value of R i increased with temperature in S. oleracea , while changing little or decreasing in the sclerophylls. Variations in Γ and R i of the sclerophyll species are not consistent with greater increase of respiration with temperature in the light in these species compared with S. oleracea .Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47470/1/425_2004_Article_BF00397389.pd

    Search for long-lived doubly charged Higgs bosons in p(p)over-bar collisions at root s=1.96 TeV

    Get PDF
    We present a search for long-lived doubly charged Higgs bosons (H+/-+/-), with signatures of high ionization energy loss and muonlike penetration. We use 292 pb(-1) of data collected in p (p) over bar collisions at root s=1.96 TeV by the CDF II detector at the Fermilab Tevatron. Observing no evidence of long-lived doubly charged particle production, we exclude H-L(+/-+/-) and H-R(+/-+/-) bosons with masses below 133 GeV/c(2) and 109 GeV/c(2), respectively. In the degenerate case we exclude H+/-+/- mass below 146 GeV/c(2). All limits are quoted at the 95% confidence level

    Measurement of the W+W- Production Cross Section in ppbar Collisions at sqrt(s)=1.96 TeV using Dilepton Events

    Get PDF
    We present a measurement of the W+W- production cross section using 184/pb of ppbar collisions at a center-of-mass energy of 1.96 TeV collected with the Collider Detector at Fermilab. Using the dilepton decay channel W+W- -> l+l-vvbar, where the charged leptons can be either electrons or muons, we find 17 candidate events compared to an expected background of 5.0+2.2-0.8 events. The resulting W+W- production cross section measurement of sigma(ppbar -> W+W-) = 14.6 +5.8 -5.1 (stat) +1.8 -3.0 (syst) +-0.9 (lum) pb agrees well with the Standard Model expectation.Comment: 8 pages, 2 figures, 2 tables. To be submitted to Physical Review Letter

    Discovery of widespread transcription initiation at microsatellites predictable by sequence-based deep neural network

    Get PDF
    Using the Cap Analysis of Gene Expression (CAGE) technology, the FANTOM5 consortium provided one of the most comprehensive maps of transcription start sites (TSSs) in several species. Strikingly, ~72% of them could not be assigned to a specific gene and initiate at unconventional regions, outside promoters or enhancers. Here, we probe these unassigned TSSs and show that, in all species studied, a significant fraction of CAGE peaks initiate at microsatellites, also called short tandem repeats (STRs). To confirm this transcription, we develop Cap Trap RNA-seq, a technology which combines cap trapping and long read MinION sequencing. We train sequence-based deep learning models able to predict CAGE signal at STRs with high accuracy. These models unveil the importance of STR surrounding sequences not only to distinguish STR classes, but also to predict the level of transcription initiation. Importantly, genetic variants linked to human diseases are preferentially found at STRs with high transcription initiation level, supporting the biological and clinical relevance of transcription initiation at STRs. Together, our results extend the repertoire of non-coding transcription associated with DNA tandem repeats and complexify STR polymorphism

    Species interactions under climate change in mixed stands of Scots pine and pedunculate oak

    No full text
    Mixed-species forests have become widely studied in the recent years because of their potential to mitigate risks associated with climate change. However, their growth dynamics are often difficult to predict because species interactions vary with climatic and edaphic conditions, stand structure and forest management. We examined species interactions in mixtures of Scots pine (Pinus sylvestris) and pedunculate oak (Quercus robur) under climate change and for varying soil conditions in the Netherlands, over a period of 30 years. We parameterized, calibrated and validated the 3-PGmix model for mixing effects in Scots pine and oak mixtures and analysed these effects under climate change. 3-PGmix performed well for the variety of forest stands examined throughout the Netherlands. Furthermore, it was also able to reproduce mixing effects for each species in mixtures compared to monocultures for the growing conditions examined. Simulated climate change resulted in lower productivity of oak and higher productivity of Scots pine, compared to the current climate. This was observed for both monospecific stands and mixtures. The mixture of Scots pine and oak showed clear but limited overyielding (mixture yield greater than the mean of the monocultures), which was mainly attributed to oak. This was maintained under the most extreme climate scenario for 2050, implying that for oak, increased growth due to mixing with Scots pine was larger than the reduction in productivity under the future climate. On resource-limited soils, Scots pine competitiveness was increased, and this was maintained under a warmer and drier climate. Our results suggest that projected changes in climate will influence species interactions and result in increased Scots pine productivity, notably on poor sandy soils, which are typical of the Netherlands.</p
    corecore