225 research outputs found

    Human genetics and genomics meetings going virtual: practical lessons learned from two international meetings in early 2020

    Get PDF
    The recent coronavirus disease 2019 (COVID-19) pandemic has caused worldwide disruption which also extends to the arena of scientific meetings around the world. Here, we explore the lessons learned from moving two human genetics and genomics meetings quickly to an online format in early 2020. The tips presented herein may be useful not only for future virtual meetings but may also enrich future physical if not hybrid meetings once they resum

    Conserved temporal ordering of promoter activation implicates common mechanisms governing the immediate early response across cell types and stimuli

    Get PDF
    Conserved temporal precedence between IEGs (light blue nodes) and other protein-coding genes (green nodes) is shown by directed edges. Genes annotated with the GO term 'response to endoplasmic reticulum stress' (GO:003497) have a red rectangle around the gene name; red squares indicate genes with CAGE clusters enriched for XBP1 transcription factor binding sites

    Update of the FANTOM web resource: from mammalian transcriptional landscape to its dynamic regulation

    Get PDF
    The international Functional Annotation Of the Mammalian Genomes 4 (FANTOM4) research collaboration set out to better understand the transcriptional network that regulates macrophage differentiation and to uncover novel components of the transcriptome employing a series of high-throughput experiments. The primary and unique technique is cap analysis of gene expression (CAGE), sequencing mRNA 5′-ends with a second-generation sequencer to quantify promoter activities even in the absence of gene annotation. Additional genome-wide experiments complement the setup including short RNA sequencing, microarray gene expression profiling on large-scale perturbation experiments and ChIP-chip for epigenetic marks and transcription factors. All the experiments are performed in a differentiation time course of the THP-1 human leukemic cell line. Furthermore, we performed a large-scale mammalian two-hybrid (M2H) assay between transcription factors and monitored their expression profile across human and mouse tissues with qRT-PCR to address combinatorial effects of regulation by transcription factors. These interdependent data have been analyzed individually and in combination with each other and are published in related but distinct papers. We provide all data together with systematic annotation in an integrated view as resource for the scientific community (http://fantom.gsc.riken.jp/4/). Additionally, we assembled a rich set of derived analysis results including published predicted and validated regulatory interactions. Here we introduce the resource and its update after the initial releas

    LRRN4 and UPK3B Are Markers of Primary Mesothelial Cells

    Get PDF
    Mesothelioma is a highly malignant tumor that is primarily caused by occupational or environmental exposure to asbestos fibers. Despite worldwide restrictions on asbestos usage, further cases are expected as diagnosis is typically 20–40 years after exposure. Once diagnosed there is a very poor prognosis with a median survival rate of 9 months. Considering this the development of early pre clinical diagnostic markers may help improve clinical outcomes.Microarray expression arrays on mesothelium and other tissues dissected from mice were used to identify candidate mesothelial lineage markers. Candidates were further tested by qRTPCR and in-situ hybridization across a mouse tissue panel. Two candidate biomarkers with the potential for secretion, uroplakin 3B (UPK3B), and leucine rich repeat neuronal 4 (LRRN4) and one commercialized mesothelioma marker, mesothelin (MSLN) were then chosen for validation across a panel of normal human primary cells, 16 established mesothelioma cell lines, 10 lung cancer lines, and a further set of 8 unrelated cancer cell lines.Within the primary cell panel, LRRN4 was only detected in primary mesothelial cells, but MSLN and UPK3B were also detected in other cell types. MSLN was detected in bronchial epithelial cells and alveolar epithelial cells and UPK3B was detected in retinal pigment epithelial cells and urothelial cells. Testing the cell line panel, MSLN was detected in 15 of the 16 mesothelioma cells lines, whereas LRRN4 was only detected in 8 and UPK3B in 6. Interestingly MSLN levels appear to be upregulated in the mesothelioma lines compared to the primary mesothelial cells, while LRRN4 and UPK3B, are either lost or down-regulated. Despite the higher fraction of mesothelioma lines positive for MSLN, it was also detected at high levels in 2 lung cancer lines and 3 other unrelated cancer lines derived from papillotubular adenocarcinoma, signet ring carcinoma and transitional cell carcinoma

    The Abundance of Short Proteins in the Mammalian Proteome

    Get PDF
    Short proteins play key roles in cell signalling and other processes, but their abundance in the mammalian proteome is unknown. Current catalogues of mammalian proteins exhibit an artefactual discontinuity at a length of 100 aa, so that protein abundance peaks just above this length and falls off sharply below it. To clarify the abundance of short proteins, we identify proteins in the FANTOM collection of mouse cDNAs by analysing synonymous and non-synonymous substitutions with the computer program CRITICA. This analysis confirms that there is no real discontinuity at length 100. Roughly 10% of mouse proteins are shorter than 100 aa, although the majority of these are variants of proteins longer than 100 aa. We identify many novel short proteins, including a “dark matter” subset containing ones that lack detectable homology to other known proteins. Translation assays confirm that some of these novel proteins can be translated and localised to the secretory pathway

    On-the-fly selection of cell-specific enhancers, genes, miRNAs and proteins across the human body using SlideBase

    Get PDF
    Genomics consortia have produced large datasets profiling the expression of genes, micro-RNAs, enhancers and more across human tissues or cells. There is a need for intuitive tools to select subsets of such data that is the most relevant for specific studies. To this end, we present SlideBase, a web tool which offers a new way of selecting genes, promoters, enhancers and microRNAs that are preferentially expressed/used in a specified set of cells/tissues, based on the use of interactive sliders. With the help of sliders, SlideBase enables users to define custom expression thresholds for individual cell types/tissues, producing sets of genes, enhancers etc. which satisfy these constraints. Changes in slider settings result in simultaneous changes in the selected sets, updated in real time. SlideBase is linked to major databases from genomics consortia, including FANTOM, GTEx, The Human Protein Atlas and BioGPS. Database URL: http://slidebase.binf.ku.d

    The frequent evolutionary birth and death of functional promoters in mouse and human

    Get PDF
    Promoters are central to the regulation of gene expression. Changes in gene regulation are thought to underlie much of the adaptive diversification between species and phenotypic variation within populations. In contrast to earlier work emphasizing the importance of enhancer evolution and subtle sequence changes at promoters, we show that dramatic changes such as the complete gain and loss (collectively, turnover) of functional promoters are common. Using quantitative measures of transcription initiation in both humans and mice across 52 matched tissues, we discriminate promoter sequence gains from losses and resolve the lineage of changes. We also identify expression divergence and functional turnover between orthologous promoters, finding only the latter is associated with local sequence changes. Promoter turnover has occurred at the majority (>56%) of protein-coding genes since humans and mice diverged. Tissue-restricted promoters are the most evolutionarily volatile where retrotransposition is an important, but not the sole, source of innovation. There is considerable heterogeneity of turnover rates between promoters in different tissues, but the consistency of these in both lineages suggests that the same biological systems are similarly inclined to transcriptional rewiring. The genes affected by promoter turnover show evidence of adaptive evolution. In mice, promoters are primarily lost through deletion of the promoter containing sequence, whereas in humans, many promoters appear to be gradually decaying with weak transcriptional output and relaxed selective constraint. Our results suggest that promoter gain and loss is an important process in the evolutionary rewiring of gene regulation and may be a significant source of phenotypic diversification
    corecore