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Abstract	

The	promoters	of	immediate	early	genes	(IEGs)	are	rapidly	activated	in	response	

to	 an	 external	 stimulus.	 These	 genes,	 also	 known	 as	 primary	 response	 genes,	

have	been	identified	in	a	range	of	cell	types,	under	diverse	extracellular	signals,	

and	using	varying	experimental	protocols.	Whereas	genomic	dissection	on	a	case	

by	case	basis	has	not	resulted	in	a	comprehensive	catalogue	of	immediate	early	

genes,	 a	 rigorous	 meta-analysis	 of	 eight	 genome-wide	 FANTOM5	 CAGE	 (Cap	

Analysis	of	Gene	Expression)	time	course	data	sets	reveals	successive	waves	of	

promoter	 activation	 in	 IEGs,	 recapitulating	 known	 relationships	 between	 cell	

types	 and	 stimuli:	 We	 obtain	 a	 set	 of	 57	 (42	 protein-coding)	 candidate	 IEGs	

possessing	 promoters	 that	 consistently	 drive	 a	 rapid	 but	 transient	 increase	 in	

expression	over	time.	These	genes	show	significant	enrichment	for	known	IEGs	

reported	 previously,	 pathways	 associated	 with	 the	 immediate	 early	 response	

and	 include	 a	 number	 of	 non-coding	 RNAs	 with	 roles	 in	 proliferation	 and	

differentiation.	Surprisingly,	we	also	find	strong	conservation	of	the	ordering	of	

activation	for	these	genes,	such	that	77	pair-wise	promoter	activation	orderings	

are	 conserved.	 Using	 the	 leverage	 of	 comprehensive	 CAGE	 time	 series	 data	

across	cell	types	we	also	document	the	extensive	alternative	promoter	usage	by	

such	genes,	which	 is	 likely	 to	have	been	a	barrier	 to	 their	discovery	until	now.	

The	 common	 activation	 ordering	 of	 the	 core	 set	 of	 early-responding	 genes	we	

identify	may	indicate	conserved	underlying	regulatory	mechanisms.	In	contrast,	

the	considerably	larger	number	of	transiently	activated	genes	that	are	specific	to	

each	cell	type	and	stimulus	illustrates	the	breadth	of	the	primary	response.	
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Introduction	

Human	 cells	 respond	 to	 a	 broad	 range	 of	 extracellular	 stimuli	 with	 a	

characteristic	 burst	 of	 transcription	 within	 minutes	 at	 many	 sites	 across	 the	

genome,	 known	 as	 the	 immediate-early	 response	 (IER).	 The	 IER	 has	 been	

observed	 as	 an	 initiating	 event	 in	 many	 cellular	 processes,	 notably	 during	

differentiation,	in	responses	to	cellular	stress,	and	in	inflammation.	The	earliest	

events	 in	 the	 IER	 involve	 the	 activation	of	 the	promoters	 of	 a	 particular	 set	 of	

genes,	 known	 as	 immediate-early	 genes	 (IEGs).	 The	 promoters	 of	 IEGs	 are	

activated	rapidly,	and	their	activation	 is	 transient	 in	normal	cells	 [1].	However,	

IEGs	 are	 often	 dysregulated	 in	 cancers	 where	 they	 can	 become	 continuously	

activated,	 accordingly	 some	of	 the	best-studied	 IEGs	are	known	oncogenes	 [2].	

For	 example,	 the	expression	of	 the	FOS	proto-oncogene	normally	peaks	within	

60	minutes	of	a	stimulus	and	subsides	after	90	minutes	[3],	 in	contrast	with	its	

continuous	overexpression	in	many	cancers.	

	

Immediate-early	genes	possess	unusually	accessible	promoters	that	allow	rapid	

transcriptional	activation	 in	response	to	a	stimulus	without	 the	requirement	of	

de	novo	protein	synthesis.	Various	features	are	thought	to	discriminate	IEGs	such	

as	the	shorter	transcripts	they	generate	and	enrichments	of	certain	transcription	

factor	 (TF)	 binding	 sites	 at	 their	 promoters	 [4].	 However,	 current	 knowledge	

about	IEGs	is	derived	mainly	from	studies	of	individual	genes	or	pathways,	and	

often	 considers	 a	 specific	 cell	 type	 and	 stimulus.	 This	means	 that	 comparison	

across	studies	can	be	confounded	by	experimental	and	technical	variation,	and	a	

comprehensive	 catalogue	 of	 IEGs	 remains	 elusive.	 There	 is	 also	 controversy	

about	the	regulatory	mechanisms	governing	the	response	of	even	relatively	well-
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studied	 IEGs	 [5].	 Beyond	 the	 induction	 of	 protein-coding	 IEG	 promoters,	 the	

features	and	underlying	mechanisms	of	 the	 IER	are	even	 less	well	understood.	

Some	 studies	 have	 implicated	 altered	 patterns	 of	 IEG	 splicing	 as	 playing	

important	roles	in	the	IER	[6],while	others	have	suggested	a	prominent	role	for	

lncRNA	 activation	 [7]	 and	 transcribed	 enhancers	 [8].	 Approximately	 20%	 of	

known	IEGs	are	transcription	factors,	 including	some	of	the	best	characterized:	

EGR1-EGR4,	FOS,	FOSB,	FOSL1,	JUN,	JUNB	and	MYC.	

	

The	FANTOM5	Cap	Analysis	of	Gene	Expression	(CAGE)	data	offer	a	number	of	

advantages	 for	 expression	 profiling	 since	 they	 are	 based	 upon	 single-molecule	

sequencing	to	avoid	PCR,	digestion	and	cloning	biases.	They	provide	up	to	single	

base	pair	resolution	of	transcription	start	sites	(TSSs)	and	promoter	regions,	and	

provide	a	sensitive,	quantitative	readout	of	transcriptional	output	accounting	for	

the	alternative	promoters	of	each	gene.	The	output	of	individual	promoters	is	not	

confounded	 by	 splicing	 variation,	 and	many	 novel	 lowly	 expressed	 transcripts	

including	 non-coding	 RNAs	 (ncRNAs)	 can	 be	 readily	 detected	 (FANTOM	

Consortium,	 Nature,	 2014;	 http://fantom.gsc.riken.jp/5/).	 CAGE	 data	 are	 thus	

ideally	suited	to	studying	the	strong	burst	of	transcription	at	promoters	seen	in	

immediate-early	 responses.	 FANTOM5	 data	 include	 eight	 CAGE	 time	 course	

datasets	employing	unusually	dense	sampling	at	 time	points	within	300	min	of	

stimulation,	 for	 a	 variety	 of	 stimuli	 treating	 a	 variety	 of	 cell	 types.	 These	

heterogeneous	 datasets,	 produced	 using	 a	 common	 experimental	 platform,	

should	 be	 fertile	 ground	 for	 novel	 insights	 into	 the	 IER,	 but	 a	 comprehensive	

meta-analysis	has	not	been	performed	until	now.	
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Many	previous	approaches	to	time	series	analysis	of	expression	data	have	been	

based	 upon	 differential	 expression	 between	 successive	 time	 points,	 or	 have	

clustered	genes	according	to	the	similarity	of	their	expression	profiles	over	time	

[9].	 Both	 of	 these	 approaches	 present	 problems	 for	 the	 analysis	 of	 CAGE	data.	

Differential	expression	between	time	points	provides	poor	sensitivity	 for	 lowly	

expressed	 transcripts	 (possessing	 too	 few	 reads	 to	 generate	 significant	

differences	 in	 expression),	 and	 presents	 serious	 difficulties	 when	 comparing	

expression	profiles	from	datasets	with	somewhat	different	sampling	points	over	

time.	 Clustering	 approaches	 often	 rely	 upon	 arbitrary	 thresholds	 (e.g.	 based	

upon	cluster	size	or	significant	enrichment	of	functional	annotation	terms)	and,	

by	definition,	will	miss	transcripts	that	cannot	be	assigned	to	a	cluster	but	may	

nevertheless	show	dynamics	of	interest.	Hence	we	refine	a	previously	successful	

Bayesian	 model	 selection	 algorithm	 to	 classify	 promoter	 responses	 to	 pre-

defined	mathematical	models	[7].	

	

Here	we	perform	extensive	meta-analyses	of	promoter	activity	in	the	human	IER,	

encompassing	unusually	diverse	cell	types	and	stimuli,	to	rigorously	classify	IEGs	

and	estimate	the	core	IEG	repertoire	active	across	cellular	responses.	We	show	

that	computational	classification	of	the	temporal	activity	patterns	of	promoters	

provides	 a	 potent	 basis	 for	 meta-analyses	 across	 time	 courses,	 exposing	 the	

combined	activity	of	known	IEGs	and	compelling	new	IEG	candidates	in	the	IEG	

core	repertoire.	We	also	show	that	the	timing	of	the	peak	expression	of	a	core	set	

of	 transiently	 activated	 genes	 has	 a	 conserved	 order.	 This	 surprising	 outcome	

indicates	a	previously	unidentified	regulatory	mechanism	that	 is	shared	among	

cell	types	and	common	to	diverse	stimuli.	
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Results	

We	considered	eight	densely	sampled,	and	well	replicated,	FANTOM5	CAGE	time	

course	 datasets	 obtained	 following	 diverse	 stimuli:	 calcification	 in	 an	

osteosarcoma	cell	line	in	response	to	osteocalcin	(SAOS2_OST),	differentiation	of	

adipose-derived	primary	mesenchymal	stem	cells	in	response	to	a	drug	mixture	

(3-isobutyl-1-methylxanthine,	 dexamethasone,	 and	 rosiglitazone)	 (PMSC_MIX),	

differentiation	 of	 primary	 lymphatic	 endothelial	 cells	 in	 response	 to	 VEGF	

(PEC_VEGF),	MCF7	breast	cancer	cell	 line	responses	to	EGF1	(MCF7_EGF1)	and	

to	 HRG	 (MCF7_HRG),	 primary	 aortic	 smooth	 muscle	 cells	 response	 to	 IL1b	

(PAC_IL1B)	and	FGF2	(PAC_FGF2),	and	primary	monocyte-derived	macrophage	

cells	activation	 in	response	to	LPS	(PMDM_LPS).	Thus,	we	 included	a	variety	of	

primary	and	cell	 line	samples,	 tracking	responses	 to	a	range	of	stimuli:	growth	

factors,	 hormones,	 drugs,	 pro-inflammatory	 cytokines	 and	 bacterial	 endotoxin	

(Figure	 1a).	 These	 diverse	 data	 provided	 a	 potent	 resource	 to	 discover	 core	

features	of	the	IER	conserved	across	cell	types	and	stimuli.	All	TSSs	for	protein-

coding	 transcripts	 were	 represented	 by	 conservatively	 selected	 CAGE	 read	

clusters	 (at	 least	 10	 TPM)	 following	Arner	 et	 al.	 (2015)	 [10].	 As	 expected,	 the	

responses	 of	 known	 immediate	 early	 genes	 often	 showed	 characteristic	

expression	peaks	early	 in	 the	 time	 series	datasets	 -	 as	 exemplified	by	FOS	and	

JUN	 –	 though	 even	 for	 these	 well-established	 IEGs	 we	 observed	 substantial	

variation	 in	 the	magnitude,	 timing	 and	duration	of	peaks	 across	 cell	 types	 and	

stimuli	(Figure	1b).	These	observations	illustrate	the	challenges	presented	in	IEG	

detection,	 even	 when	 studying	 known	 IEGs	 using	 a	 uniform	 experimental	

platform.	
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Optimising	and	refining	the	approach	developed	by	Aitken	et	al	(2015)	[7]	(see	

Methods),	 we	 defined	 four	 mathematical	 models	 representing	 archetypical	

expression	profiles	of	interest	over	time:	peak,	linear,	dip	and	decay	(electronic	

supplementary	material,	 Figure	 S1),	 and	 assessed	 the	 fit	 of	 each	model	 to	 the	

expression	profile	of	each	gene	using	nested	sampling	to	compute	the	marginal	

likelihood,	 log	 Z	 [7].	 Where	 sufficient	 evidence	 exists	 (given	 the	 variation	

between	replicates)	the	algorithm	returns	a	classification	of	an	input	transcript	

to	a	model,	and	also	computes	relevant	parameters	of	the	fitted	models	(e.g.	time	

and	 magnitude	 of	 peak	 expression).	 These	 parameter	 estimates	 provide	 a	

reliable	 basis	 for	 comparisons	 across	 time	 series	 datasets,	 even	with	 different	

sampling	densities	[7]	as	they	are	not	restricted	to	sampling	times	or	expression	

values	at	those	times.	

CAGE	time	series	meta-analysis	reveals	a	core	complement	of	transiently	

activated	promoters	

Across	 the	 eight	 time	 series	 datasets	 we	 considered	 all	 CAGE	 clusters	

corresponding	 to	 the	 TSSs	 of	 known	 Ensembl	 [11]	 transcripts,	 encompassing	

between	 10,513	 (corresponding	 to	 7,706	 Ensembl	 genes)	 and	 14,376	 (8,951	

genes)	protein-coding	CAGE	TSSs,	depending	on	the	dataset,	and	between	1,202	

(692	 genes)	 and	 1,640	 (858	 genes)	 non-coding	 RNA	 CAGE	 TSSs	 (electronic	

supplementary	 material,	 Table	 S1).	 Between	 15%	 and	 42%	 of	 protein-coding	

CAGE	 TSSs,	 and	 between	 15%	 and	 33%	 of	 non-coding	 TSSs	 were	 confidently	

classified	 to	 one	 of	 the	 four	 models,	 depending	 on	 the	 dataset	 (electronic	

supplementary	 material,	 Figure	 S2,	 Table	 S2).	 The	 remainder	 could	 not	 be	

rigorously	 classified	 to	a	 single	model	 and	were	omitted	 from	 further	analysis.	
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The	peak	model	had	 the	highest	number	of	 assignments	 in	 all	 the	datasets	 for	

both	 protein-coding	 and	 ncRNA	 genes;	 for	 example,	 of	 12,132	 total	 Ensembl	

protein-coding	genes	tested,	we	found	8,785	Ensembl	genes	(72%)	to	peak	in	at	

least	one	of	the	datasets.	In	contrast,	few	genes	were	classified	to	the	peak	model	

in	 multiple	 datasets,	 with	 only	 42	 of	 such	 genes	 shared	 across	 at	 least	 seven	

datasets	(Figure	1c),	underlining	the	high	variability	of	transcriptional	responses	

seen	for	the	same	promoters	across	time	series.	These	42	genes	constituted	our	

‘robust’	 set	 of	 candidate	 IEGs	 (genes,	 TSSs	 and	 peak	 times	 listed	 in	 electronic	

supplementary	material,	 File	 S1).	We	 also	 defined	 a	 less	 stringent	 ‘permissive’	

set	of	1,304	candidates	shared	across	at	least	four	out	of	eight	datasets.	

We	 then	 explored	 the	 overlap	 in	 peaking	 genes	 outside	 of	 the	 robust	 set	

(electronic	supplementary	material,	Table	S3)	and	found	that,	for	each	dataset,	at	

least	8%	of	peaking	genes	are	shared	with	another	dataset	(range	8%-16%)	and	

up	 to	 52%	 of	 peaking	 genes	 are	 shared	 (range	 19%-52%).	 The	 intersections	

between	sets	of	3	datasets	became	smaller	consequently.	Notably,	approximately	

50%	 of	 peaking	 genes	 are	 shared	 between	 datasets	where	 the	 cell	 type	 is	 the	

same	(MCF7	and	PAC).		

Our	model	fitting	approach	provided	parameter	estimates	for	all	promoters	

assigned	to	the	same	model,	providing	a	straightforward	and	intuitive	basis	for	

meta-analysis.	For	example,	comparison	of	the	peak	times	(tp)	(Figure	2a)	for	all	

promoters	classified	as	peaks	in	at	least	four	datasets	(the	permissive	set)	

readily	demonstrated	common	patterns	across	datasets	(Figure	2b).	Waves	of	

promoter	activation	were	evident,	with	certain	promoters,	particularly	known	

IEGs,	activated	in	the	same	early	time	window	in	multiple	datasets.	Hierarchical	

clustering	of	the	datasets	based	on	these	peak	class	promoters	(9%	of	all	
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promoters	assayed)	also	recapitulated	known	relationships	between	cell	types	

and	stimuli	(Figure	2b).	The	two	datasets	derived	from	the	same	breast	cancer	

cell	line	(MCF7_EGF1	and	MCF7_HRG)	and	stimulated	with	different	ligands	of	

the	same	ErbB	receptor	family	clustered	together	as	might	be	expected.	We	

observed	similar	behaviour	for	the	two	primary	aortic	cell	samples	exposed	to	a	

growth	factor	or	activated	by	a	pro-inflammatory	cytokine	(PAC_FGF2	and	

PAC_IL1B	respectively).	Thus,	similarities	in	promoter	activation	dynamics	

(reflected	in	tp	parameter	estimates)	between	datasets	may	reflect	underlying	

commonalities	in	their	underlying	biology.	

The	 extent	 of	 alternative	 promoter	 usage	 across	 the	 robust	 set	 of	 IEGs	 and	

candidate	IEGs	is	shown	in	Figure	3	(see	also	electronic	supplementary	material,	

Figure	 S3).	 Candidate	 IEGs	 show	 slightly	 greater	 variability	 in	 the	 TSSs	 they	

activate	 across	 datasets	 compared	 with	 known	 IEGs,	 with	 a	 greater	 median	

number	TSS	 found	 to	peak	(3.5	compared	with	2	 for	known	 IEGs).	 In	addition,	

known	 IEGs	 tend	 to	 possess	 TSSs	 that	 are	 successfully	 classified	 to	 the	 peak	

model	across	a	larger	number	of	datasets	(mean	proportion	of	datasets	classified	

as	 peak	 per	 TSS	 for	 known	 IEGs	 in	 the	 robust	 set	 =	 4;	 candidate	 IEG	 mean	

proportion	 =	 2.5).	 Thus,	 known	 IEGs	 tend	 to	 possess	 smaller	 numbers	 of	

alternative	TSSs	that	also	tend	to	show	discernible	peaks	 in	the	majority	of	the	

time	 series	 datasets.	 It	 is	 possible	 that	 these	 relatively	 stereotypical	

transcriptional	 characteristics	 of	 known	 IEGs	 may,	 in	 some	 cases,	 have	 led	 to	

their	status	as	well	established	IEGs.	Similarly,	the	increased	variability	seen	for	

the	 TSSs	 of	 candidate	 IEGs	 could	 have	 led	 to	 a	 failure	 to	 detect	 their	 IEG-like	

behaviour	in	former	studies.	
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We	 investigated	 the	 nature	 of	 our	 promoter	 classifications	 by	 testing	 the	

enrichment	of	known	IEGs	(see	Methods)	within	each	class,	for	each	dataset.	The	

peak	 class	 was	 enriched	 for	 known	 IEGs	 in	 all	 datasets	 (electronic	

supplementary	 material,	 Figure	 S4,	 Table	 S4),	 but	 failed	 to	 reach	 statistical	

significance	 in	 PMSC_MIX	 (OR	 =	 1.3,	 p	 =	 0.2).	 Peaking	 genes	 shared	 across	

datasets	were	generally	associated	with	significant	enrichments	of	known	IEGs	

(Table	1),	with	the	permissive	set	(shared	across	4	or	more	datasets)	expected	to	

contain	 higher	 numbers	 of	 false	 positives	 than	 the	 robust	 set	 (7	 or	 more	

datasets).	Genes	possessing	TSSs	assigned	to	the	peak	class	showed	enrichments	

for	Gene	Ontology	(GO)	processes	associated	with	 transcription,	cell	activation,	

cell	proliferation,	cell	differentiation	and	cancer	related	terms	such	as	cell	death	

and	apoptosis	(FDR	<	0.05;	Methods)	[12,	13].	These	terms	were	also	consistent	

with	previous	studies	of	IEGs	[4]	as	genes	in	the	robust	set	showed	enrichment	

for	285	GO	terms,	over	30%	(88)	of	which	were	shared	with	the	list	of	773	GO	

terms	of	all	known	IEGs	(electronic	supplementary	material,	Table	S5).	

	

Table	1.	Enrichment	of	known	IEGs	for	genes	classified	to	the	peak	model	
in	multiple	datasets	

Shared	
datasets	

IEGs	enrichment	 #	CAGE	TSSs	
(median)	#	

genes	
#	
IEGs	

#	CAGE	
TSSs	
(across	8	
datasets)	

#	IEG	CAGE	
TSSs	
(across	8	
datasets)		

OR	 p	

1	to	8	(all	
peaking	
genes)		

8,785	 204	 102,496	 913	 -	 -	 1	

2	to	8	 5,270	 171	 71,	384	 853	 6.3	 2.2e-16	 1	
3	to	8	 2,882	 128	 45,360	 751	 5.9	 2.2e-16	 2	
4	to	8	 1,304	 86	 24,616	 590	 5.9	 2.2e-16	 2	
5	to	8	 507	 56	 11,528	 433	 7.4	 2.2e-16	 3	
6	to	8	 182	 35	 4,896	 299	 10.3	 2.2e-16	 3	
7	to	8	 42	 13	 1,376	 124	 12.6	 2.2e-16	 4	
8	 5	 2	 264	 18	 8.3	 4.6e-11	 5	
Enrichment	 (expressed	as	odds	 ratios)	and	p	values	 for	genes	classified	across	
different	numbers	of	time	series	datasets.		
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Novel	non-coding	RNA	candidates	in	the	immediate	early	response	

We	next	applied	our	 classification	 to	promoters	driving	 the	expression	of	non-

coding	 transcripts	 and	 found	 peak	 promoters	 driving	 the	 expression	 of	 20	

ncRNA	 genes	 (across	 at	 least	 seven	 datasets),	 constituting	 the	 robust	 set	 of	

ncRNA	 candidate	 IEGs.	 These	 included	 promoters	 associated	 with	 the	 cellular	

splicing	machinery,	such	as	small	nuclear	RNA	multi-gene	families	(U1,	U2,	and	

U4),	 which	 are	 part	 of	 the	 spliceosome,	 and	 SCARNA17,	 a	 small	 nuclear	 RNA	

which	 contributes	 to	 the	 post	 transcriptional	 modification	 of	 many	 snRNPs.	

Kalam	 et	 al.	 have	 shown	 that	 macrophage	 infection	 with	 Mycobacterium	

tuberculosis	results	in	the	systematic	perturbation	in	splicing	patterns	[14],	and	

our	 results	 suggest	 more	 general	 roles	 for	 alternative	 splicing	 in	 the	 IER.	

However,	 multigene	 families,	 such	 as	 these	 small	 nuclear	 RNAs,	 present	

particular	challenges	for	reliable	sequence	read	mapping.	Although	probabilistic	

approaches	 to	 mapping	 ambiguously	 mapped	 reads	 were	 developed	 in	

FANTOM5	[10]	we	have	chosen	to	conservatively	remove	these	genes	from	the	

robust	set,	 leaving	a	group	of	15	non-coding	genes	with	a	median	of	5	peaking	

TSS	(Table	2;	electronic	supplementary	material,	Figure	S5	and	S6).	

Three	miRNAs	 are	 present	 in	 the	 robust	 set	 (Table	 2)	 including	 the	 oncogene	

miR-21	 which	 was	 previously	 reported	 to	 show	 IEG-like	 behaviour	 in	 the	

PAC_FGF2,	 PAC_IL1B	 and	 MCF7_HRG	 time	 series	 [7].	 Here	 we	 find	 similar	

behaviour	 in	 the	 MCF7_EGF1,	 PEC_VEGF,	 PMSC_MIX	 and	 SAOS2_OST	 datasets.	

This	 extends	 previous	 studies	 reporting	 that	 the	 miR-21	 mature	 transcript	 is	

upregulated	on	EGF	treatment	in	MCF10A	[15]	and	HeLa	[16]	cells.	miR-29A	has	



	 13	

been	 associated	 with	 the	 viability	 and	 proliferation	 of	 mesenchymal	 stem	 cell	

and	gastric	cancer	cells	[17,	18]	and	DLEU2	is	a	putative	tumour	suppressor	gene	

that	hosts	two	miRNAs,	miR-15A	and	miR-16-1	which	are	known	to	inhibit	cell	

proliferation	and	 the	 colony-forming	ability	of	 tumour	 cell	 lines,	 and	 to	 induce	

apoptosis	 [19-21].	 Seven	 lncRNAs	 also	 appear	 in	 the	 robust	 set	 (Table	 2)	 and	

among	 them	 LINC00478	 is	 particularly	 interesting,	 as	 it	 has	 already	 been	

reported	to	show	IEG-like	behaviour	[7],	is	implicated	in	breast	cancer	and	hosts	

an	 intronic	 cluster	 of	miRNAs	 comprising	 let-7c,	miR-99a,	 and	miR-125b	 [22].	

Although	 poorly	 characterised,	 LINC00263,	 LINC-PINT	 and	 LINC00963	 are	

thought	 to	be	 involved	 in	biological	 processes	often	 triggered	by	 IEGs,	 such	 as	

cell	maturation,	cell	proliferation	and	the	expression	of	growth	factor	receptors	

[23-26].	
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Table	2.	Non-coding	genes	peaking	in	at	least	7	out	of	8	datasets.	

Gene	ID	 Nº	Shared	
Datasets	

Description	(PuMed	ref.)	

LINC00478	
(MIR99AHG) 
	

7	 It	has	a	role	in	cell	proliferation	and	
differentiation	and	it	is	considered	a	regulator	
of	oncogenes	in	leukemia	(PMID:	25027842)	

LINC00263	 7	 Regulation	of	oligodendrocyte	maturation	
(PMID:	25575711)		

LINC-PINT	 8	 Putative	tumor	suppressor	(PMID:	24070194)	
LINC00963	 7	 Involved	in	the	prostate	cancer	transition	

from	androgen-dependent	to	androgen-
independent	and	metastasis	via	the	EGFR	
signaling	pathway	(PMID:	24691949)	

LINC00476	 8	 Uncharacterized	lincRNA	
LINC00674	 7	 Uncharacterized	lincRNA		
STX18-AS1	 7	 Uncharacterized	lincRNA	
DLEU2	 7	 Critical	host	gene	of	the	cell	cycle	inhibitory	

microRNAs	miR-15a	and	miR-16-1	
(PMID:19591824)	

MiR-29A	 7	 The	expression	of	the	miR-29	family	has	
antifibrotic	effects	in	heart,	kidney,	and	other	
organs.	miR-29s	have	also	been	shown	to	
induce	apoptosis	and	regulate	cell	
differentiation	(PMID:	22214600)	
	

MiR-3654	 7	 Involved	in	Prostate	Cancer	progression	
(PMID:	27297584)	

MiR-21	 7	 Oncogenic	potential	(PMID:	18548003)	
AL928646	 7	 Uncharacterized	ncRNA	
SCARNA17	 7	 scaRNA	Involved	in	the	maturation	of	other	

RNA	molecules	(PMID:	12032087)	
SNORD65	 7	 Belongs	to	the	Small	nucleolar	RNAs,	C/D	

family.	Involved	in	rRNA	modification	and	
alternative	splicing	(PMID:	26957605)	

SNORD82	 7	 Belongs	to	the	Small	nucleolar	RNAs,	C/D	
family.	Involved	in	rRNA	modification	and	
alternative	splicing	(PMID:	26957605)	

The	short	descriptions	of	the	molecular	function	are	from	the	genecard	database	
[27].	

	

Known	IEG	promoters	show	conserved	temporal	order	of	activation	across	

datasets	

Having	 established	 common	 patterns	 of	 peak	 gene	 induction	 at	 similar	 times	

across	datasets	(Figure	2b),	we	hypothesised	that	IEGs	may	also	be	induced	in	a	

conserved	order	over	time.	To	our	knowledge	the	extent	of	conserved	ordering	
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in	gene	induction	is	unstudied	in	general,	and	in	the	IER	it	is	of	particular	interest	

for	 two	 main	 reasons.	 Firstly,	 the	 presence	 of	 conserved	 gene	 orderings,	 in	

addition	 to	 common	 gene	 classifications,	 provides	 an	 additional	 test	 for	

functional	 similarity	 between	 datasets.	 Secondly,	 strongly	 conserved	 ordering	

may	 suggest	 the	 existence	 of	 conserved	 regulatory	mechanisms	 governing	 the	

induction	of	 these	genes.	To	analyse	 the	 relative	order	of	 activation	across	 the	

eight	datasets	we	compared	the	peak	time	of	each	gene	to	that	of	all	others	in	the	

peak	class.	If	the	relative	temporal	order	of	two	genes	was	conserved	in	at	least	

seven	of	the	eight	datasets	the	ordering	for	this	pair	was	considered	conserved	

and	represented	by	an	edge	in	the	conserved	activation	network	(Figure	4).	

We	 found	 77	 pairs	 of	 genes	 showing	 conserved	 ordering	 in	 their	 activation,	

involving	 40	 of	 the	 57	 genes	 in	 the	 robust	 set.	 FOS	 was	 the	 first	 gene	 to	 be	

activated	 (lacking	 a	 predecessor	 in	 the	 ordering)	 and	 SDC4,	 EHD1	 and	

TMEM185B	 were	 the	 last.	 The	 number	 of	 conserved	 temporal	 connections	

observed	 overall	 is	 statistically	 significant	 (p	 <	 5e-3)	 by	 comparison	 to	 the	

distribution	 of	 expected	 connections	 given	 1,000,000	 permuted	 datasets	

(Methods).	 This	 appears	 to	 reflect	 a	 conserved	 coordination	 in	 promoter	

activation	during	 the	 IER	and	 further	supports	 the	candidacy	of	 the	novel	 IEGs	

detected.	Many	genes	 in	 this	network	are	known	 to	participate	 in	well-studied	

pathways	 active	 in	 the	 IER	 such	 as	 the	 MAPK	 signalling	 pathway	 as	 we	 now	

discuss.	

Known	IEGs	and	candidate	IEGs	participate	in	common	signalling	pathways	

Having	shown	that	the	peak	model	described	the	behaviour	of	known	IEGs,	we	

speculated	 that	 the	 other	 genes	 assigned	 to	 this	 model	 might	 include	 novel	
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candidate	IEGs.	Of	the	42	genes	in	the	robust	set	more	than	two	thirds	(29	genes)	

are	not	known	to	be	IEGs	and	can,	therefore,	be	considered	to	be	candidate	novel	

IEGs	(henceforth	candidate	 IEGs).	Pathway	analysis	 [28]	recovers	many	known	

relationships	 among	 known	 IEGs	 as	 expected,	 centred	 on	 heavily	 studied	 IEGs	

such	as	FOS	and	 JUN.	However,	 the	same	analysis	suggests	 that	more	 than	half	

(17)	of	 candidate	 IEGs	also	participate	 in	common	pathways	with	known	 IEGs,	

involving	 a	 densely	 inter-connected	 network	 of	 83	 significantly	 over-

represented	pathways	 (electronic	supplementary	material,	Table	S6),	 including	

signalling	 cascades	 known	 to	 mediate	 the	 IER,	 such	 as	 the	 Ca2+-dependent	

pathways	and	the	mitogen-activated	protein	(MAP)	kinase	network	[29,	30].	

	

The	dynamics	of	 the	expression	of	peak-classified	genes	can	be	visualized	by	a	

scatterplot	of	fold	change	against	peak	time	(electronic	supplementary	material,	

Figure	 S7).	 These	 quantitative	 features	 along	 with	 the	 conserved	 temporal	

orderings	 described	 above	 show	FOS	 as	 the	 earliest	 peaking	 IEG,	 EHD1	 as	 the	

last,	 with	 an	 array	 of	 conserved	 orderings	 subsequent	 to,	 and	 prior	 to	 the	

peaking	 of	 these	 genes	 respectively	 (selected	 genes	 plotted	 in	 Figure	 5).	 The	

TSSs	 of	 known	 IEGs	 CAGE	 tend	 to	 show	 the	 greatest	 fold	 changes	 (electronic	

supplementary	 material,	 Figure	 S8A,	 Wilcoxon	 p	 <	 2.2e-16),	 however,	 some	

candidate	 IEGs	 promoters	 show	 notably	 similar	 timing	 (electronic	

supplementary	material,	Figure	S8C,	Wilcoxon	p	=	0.89).	The	time	of	peaking	is	

significantly	 earlier	 for	 known	 IEGs	 relative	 to	 the	 other	 protein-coding	

promoters	 in	 only	 three	 time	 series:	 PMDM_LPS,	 MCF7_EGF1	 and	 PEC_VEGF.	

Fold	 changes	 in	peak	ncRNA	promoters	 tend	 to	be	 lower	 than	 for	known	 IEGs	

(electronic	 supplementary	 material,	 Figure	 S8B,	 Wilcoxon	 p	 <	 0.05)	 but	 they	
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occur	earlier	 than	known	IEGs	(electronic	supplementary	material,	Figure	S8D,	

Wilcoxon	p	<	0.05	for	all	datasets).	

	

Among	the	candidate	IEGs	in	the	robust	set,	XBP1	is	especially	noteworthy.	This	

gene	 encodes	 a	 transcription	 factor	 and	 is	 relatively	 short	 in	 length	 (6Kb	

compared	 with	 the	 mean	 of	 58Kb	 for	 all	 Ensembl	 protein-coding	 genes)	

consistent	with	the	IEG	archetype	[1].	XBP1	is	a	highly	conserved	component	of	

the	 Unfolded	 Protein	 Response	 (UPR)	 signalling	 pathways,	 activated	 by	

unconventional	splicing	upon	Endoplasmic	Reticulum	(ER)	stress	or	nonclassical	

anticipatory	activation	[31-33],	and	regulates	a	diverse	array	of	genes	 involved	

in	 ER	 homeostasis,	 adipogenesis,	 lipogenesis	 and	 cell	 survival	 [34,	 35].	

Interestingly,	genes	 in	the	robust	set	are	significantly	enriched	for	the	GO	term	

GO:003497	response	to	endoplasmic	reticulum	stress	(FDR	<	0.05,	all	tested	genes	

as	the	background),	and	four	of	the	five	genes	in	the	robust	set	sharing	this	term	

peak	in	conserved	order	across	the	datasets.	Furthermore,	we	found	a	significant	

enrichment	(FDR	<	0.05)	of	the	XBP1	binding	motif	in	the	promoter	regions	(see	

Methods)	of	 the	robust	set	of	genes	(electronic	supplementary	material,	Figure	

S9).	

Discussion	

Exploiting	 the	 precision	 of	 FANTOM5	 CAGE	 times	 series	 data,	 we	 discover	 a	

robust	 set	 of	 42	protein-coding	 genes	driven	by	promoters	 showing	 rapid	 and	

transient	 activation	 in	 response	 to	 multiple	 stimuli.	 This	 set	 contains	 13	

previously	 known	 IEGs	 and	 29	 candidate	 IEGs,	 which	 are	 likely	 to	 be	 core	

components	of	the	IER.	Applying	our	approach	to	the	CAGE	TSSs	of	ncRNAs	we	
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also	 discovered	 a	 set	 of	 15	 ncRNAs	 peaking	 across	 at	 least	 seven	 datasets,	

comprising	 miRNAs	 and	 lncRNAs,	 suggesting	 regulatory	 roles	 for	 particular	

miRNAs	and	lncRNAs	species	in	the	IER	[7].		

	

FOS	expression	has	 long	been	 considered	 to	 lead	 the	 IER	after	 cell	 stimulation	

[36,	37],	our	results	on	 the	 IER	conserved	activation	network	support	 this,	but	

also	similarly	conserved	relationships	extending	to	an	additional	39	coding	and	

non-coding	genes.	Furthermore,	we	observed	many	known	and	novel	IEGs	in	this	

network	known	to	be	involved	in	a	range	of	signalling	pathways	active	in	the	IER,	

such	 as	 the	 MAPK	 and	 the	 EGF/EGFR	 signalling	 pathways.	 This	 suggests	 the	

variable	 constellations	 of	 genes	 involved	 in	 the	 IER	 to	 any	 particular	 stimulus	

may	be	underpinned	by	a	deeper	 level	of	 conservation	 in	 the	 regulation	of	 the	

IER	across	stimuli.	

	

One	 of	 the	most	 interesting	 candidate	 IEGs,	 XBP1,	 can	 be	 rapidly	 activated	 by	

alternative	 splicing	 minutes	 after	 cell	 stimulation	 with	 mitogenic	 hormones,	

activating	 peptides	 such	 as	 LPS	 and	 cytokines	 [31-33].	 This	 key	 event	 of	 the	

induced	 unfolded	 protein	 response	 (UPR)	 pathway	 is	 a	 conserved	 eukaryotic	

response	 to	 cellular	 stress,	 and	 is	 thought	 to	 cooperate	 in	 the	 regulation	 of	

immediate	early	gene	expression	[32].	However,	the	dynamics	of	XBP1	promoter	

induction	 in	 the	 context	 of	 the	 IER	 have	 not	 been	 studied	 previously.	

Interestingly	we	found	a	significant	enrichment	for	XBP1	TF	binding	sites	in	the	

promoter	 regions	 of	 11	 genes	 in	 the	 IER	 conserved	 activated	 network.	 The	

presence	of	XBP1	and	XBP1-responding	genes	in	this	network	suggests	this	gene	

may	act	as	an	important	link	between	the	IER	and	the	UPR	pathway.		
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Materials	and	methods	

Datasets		

The	 eight	 datasets	 used	 (Figure	 1)	 are	 the	most	 densely	 sampled	 human	 time	

series	 produced	 by	 the	 FANTOM5	Project,	with	 all	 time	 points	 represented	 by	

three	replicates	[38].	Detailed	information	on	the	generation	of	these	datasets	is	

available	 from	 Arner	 et	 al.	 (2015)	 [10],	 including	 CAGE	 library	 preparation,	

quality	 control,	 sequencing	 and	 qRT-PCR	 validation,	 as	 well	 as	 protocols	 for	

CAGE	read	clustering	and	TSS	detection.	All	CAGE	clusters	representing	TSSs	of	

protein-coding	 genes	 were	 conservatively	 thresholded	 to	 >10	 TPM	 (tags	 per	

million),	while	 CAGE	 clusters	 corresponding	 to	ncRNA	were	 thresholded	 to	>2	

TPM,	 allowing	 for	 their	 generally	 lower	 expression	 levels.	 FANTOM5	 data	

downloads,	browsers	and	genomic	 tools	are	available	 from	the	project	website	

(http://fantom.gsc.riken.jp/5/).	

Model-based	classification	of	TSS	expression	profiles	

To	classify	 time-series	data	 for	each	CAGE	defined	TSS	we	refined	a	previously	

published	 method	 [7]	 which	 fits	 different	 mathematical	 models	 (kinetic	

signatures)	to	 individual	expression	profiles,	assessing	the	best	 fit	using	nested	

sampling	 [39]	 to	 compute	 the	 marginal	 likelihood,	 logZ.	 All	 time	 series	 were	

normalized	such	that	the	medium	minimum	and	maximum	across	the	time	series	

was	set	to	0	and	10,	respectively.		

The	 kinetic	 signatures	 considered	 are:	 linear,	 decay,	 dip	 and	 delayed	 peak	

(electronic	 supplementary	 material,	 Figure	 S1).	 The	 peak	 kinetic	 signature	

considered	 in	 the	 previous	 method	 was	 modified	 to	 allow	 a	 delay	 before	

expression	starts	to	increase	in	exponential	fashion	(td).	Parameter	ts	is	the	time	
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duration	of	the	initial	increase	in	expression,	p1	is	the	expression	at	time	0,	and	

p2	is	the	increase	in	expression	at	the	time	of	peaking,	tp	=	td	+	ts.		

δ =
log 0.3

t*
	

(	1	)	

y = p-; t ≤ t0	

(	2	)	

y = p- + p2 1 − e6 7879 ; t0 < t ≤ t0 + t*	

(	3	)	

y = p- + p2 1 − e6 7879 − p2 1 − e6 787987; ; t > t0 + t*	

(	4	)	

	 	 	 	 	 	 	 	 	 	 	 	
However,	 an	 alternative	 rate	δ = =>? @.-

79
	was	 also	 used	 to	 model	 the	 slower	

dynamics	of	transcripts	peaking	later	in	time,	and	the	best	fitting	model	selected	

during	 the	 decision	 step. Normalising	 the	 data	 such	 that	 expression	 lies	 in	 the	

range	0-10	allowed	the	prior	ranges	of	parameters	to	be	restricted	to	plausible	

values	that	applied	to	all	time	series.	The	fit	of	models	to	data	was	improved	as	a	

result.	To	account	for	any	impact	on	the	log	Z	calculation,	we	generated	synthetic	

time	 series	 datasets	 using	 parameter	 values	 drawn	 at	 random	 from	 the	 prior	

ranges	to	generate	one	replicate,	and	generated	two	other	replicates	by	adding	

and	subtracting	(respectively)	a	given	amount	of	noise	to	the	first.	Model	fitting	

was	applied	 to	1000	such	datasets	per	model	 (using	 the	 same	noise	values	 for	

each	model	on	each	of	 the	1000	 iterations)	and	we	observed	an	advantage	 for	

each	of	the	more	complex	models	in	comparison	with	the	linear	model	that	was	

consistent	over	the	range	of	log	Z	values	obtained	for	the	linear	model.	To	offset	
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this	 effect	 for	 each	 complex	 model,	 the	 advantage	 (mean	 difference	 plus	 two	

standard	deviations	observed	 in	 synthetic	data)	was	 subtracted	 from	 the	 log	Z	

values	calculated	for	CAGE	TSS	data	when	making	the	categorisation	decision. 

Transcription	factor	binding	site	identification 

We	assessed	the	enrichment	of	transcription	factor	binding	site	(TFBS)	motifs	in	

the	 JASPAR	database	 [40]	 (January	2017	 release)	 for	 all	 CAGE	TSS	assigned	 to	

genes	 in	 the	 robust	 set	 relative	 to	 those	 assigned	 to	 the	 12,132	 genes	 tested	

across	 all	 the	 datasets.	 Motif	 matches	 (FDR	 ≤	 0.05)	 were	 sought	 in	 flanking	

400bp	windows	centred	on	the	middle	of	each	CAGE	TSS	analysed),	using	FIMO	

[41]	from	the	MEME	package	(version	4.11.2	patch	2).	Enrichment	of	each	motif	

in	the	robust	set	relative	to	the	total	set	was	assessed	with	Fisher’s	exact	tests,	

correcting	for	multiple	testing	(FDR	≤	0.05).	

Pathway	and	Gene	Ontology	enrichment	

Functional	 and	 pathway	 enrichments	 were	 assessed	 using	 GOrilla	 [13]	 and	

InnateDB	[28]	respectively	(FDR	≤	0.05),	using	the	total	12,132	genes	analysed	

across	the	eight	datasets	as	the	background	set.		

The	 list	of	234	known	IEGs	[10]	was	assembled	 from	20	published	human	and	

mouse	datasets	 from	the	 literature;	 it	 is	expected	to	contain	 few	false	positives	

but	does	 include	a	number	of	 IEGs	only	reported	 in	cells	and/or	responses	not	

examined	 in	 this	 study.	 To	 compute	 the	 enrichment	 of	 known	 IEGs	 in	 each	

dataset	we	compared	the	proportion	of	peaking	CAGE	TSSs	assigned	to	IEGs	with	

the	 proportion	 of	 peaking	 CAGE	 TSSs	 assigned	 to	 candidate	 IEGs.	 For	 the	

enrichment	of	known	IEGs	in	each	set	of	shared	peaking	genes	we	compared	the	

proportion	of	peaking	CAGE	TSSs	assigned	 to	 the	 IEGs	shared	 in	each	group	of	

shared	genes	with	the	proportion	of	peaking	CAGE	TSSs	assigned	to	IEGs	in	the	
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remaining	 tested	 genes.	 The	 odds	 ratio	 and	 the	 p-value	 was	 assigned	 using	

Fisher’s	exact	test.	

Network	conservation		

A	 total	 of	 57	 protein-coding	 and	 non-coding	 candidate	 IEGs	 (corresponding	 to	

known	 Ensembl	 genes)	 were	 considered	 for	 construction	 of	 the	 conserved	

activation	 network.	 For	 genes	 with	 multiple	 peaking	 CAGE	 TSS	 we	 chose	 the	

earliest	 peaking	 CAGE	 TSS	 (smallest	 tp)	 in	 each	 dataset,	 then	 the	 relative	

pairwise	order	of	each	gene	was	computed	with	respect	to	all	the	other	genes	in	

the	robust	set.	For	example,	if	in	dataset-1,	gene-A	peaks	before	gene-B	(tp	gene-A	<	

tp	gene-B),	 and	 this	 order	 is	 observed	 in	 6	 or	 more	 of	 the	 other	 7	 dataset,	 the	

temporal	precedence	 is	defined	to	be	conserved.	Applying	this	procedure	to	all	

57	 coding	 and	 non-coding	 genes	 of	 the	 robust	 set	 we	 discovered	 40	 genes	

temporally	 connected	 by	 77	 conserved	 relative	 orderings	 (Figure	 4).	 The	

significance	 of	 the	 number	 of	 temporal	 connections	 observed	 was	 measured	

relative	 to	null	distribution,	 constructed	by	permuting	 tp	 for	all	 the	CAGE	TSSs	

1,000,000	times;	with	the	proportion	of	permuted	datasets	with	at	least	as	many	

conserved	 orderings	 as	 the	 observed	 taken	 as	 an	 empirically	 derived	 p-value.	

The	 observed	 value	 (77)	was	 observed	 or	 exceeded	 in	 4,516	 out	 of	 1,000,000	

permutations	 indicating	 that	 the	 number	 of	 temporal	 connections	 was	

statistically	significant	(p	<	5e-3).	
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	Figure	 1.	 Time	 course	 datasets	 demonstrating	 the	 immediate	 early	
response.	(a)	Schematic	of	the	eight	time	course	datasets	considered,	horizontal	
lines	 indicate	 the	 time	 span	 and	 symbols	 show	 the	 sampling	 times.	 Time	 zero	
corresponds	 to	 inactivated	 or	 quiescent	 cells	 in	 all	 cases.	 (b)	 The	 time	 course	
expression	profile	of	FOS	(left)	and	JUN	(right)	in	all	eight	datasets.	Cage	cluster	
expression	(mean	TPM	of	three	replicates)	is	plotted	against	time.	(c)	The	extent	
to	which	the	classification	of	a	TSS	as	a	peak	is	unique	to	one	dataset	(3515	TSS)	
or	shared	between	2	or	more	datasets.	
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Figure	 2.	 Broad	 trends	 in	 peak	 expression	 times	 across	 datasets.	 (a)	
Identification	 of	 the	 peak	 time	 parameter	 (tp)	 of	 FOS	 estimated	 from	 the	
PMDM_LPS	 time	 series	 (filled	 symbols	 indicate	 the	 median	 TPM;	 unfilled	
symbols	 are	 individual	 replicates;	 green	 lines	 represent	 tp	 and	 one	 standard	
deviation	 above	 and	 below).	 (b)	Heatmap	 of	 the	 times	 of	 peak	TSS	 expression	
(tp)	for	TSSs	in	the	permissive	set	for	all	datasets.	Heatmap	colours	reflect	the	tp	
for	each	CAGE	TSS	(within	100	min:	dark	green;	100-150	min:	light	green;	150-
200	min:	yellow;	beyond	200	min:	red).	Known	IEGs	are	indicated	on	the	left	by	
black	cells.	
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Figure	 3.	 Promoter	 usage	 across	 time	 series	 datasets.	 For	 representative	
genes,	barcharts	show	the	number	of	datasets	where	each	TSS	peaks	to	illustrate	
the	 diversity	 of	 TSS	 usage	 and	 commonality	 of	 the	 peaking	 response.	 Known	
IEGS	are	shown	in	blue,	transcription	factors	in	yellow	and	other	genes	in	green.	
FOSB	has	a	single	TSS	that	peaks	in	8	datasets,	JUN	has	three	TSS	each	peaking	in	
4	or	more	datasets,	and	XBP1	has	6	TSS	that	peak	in	between	1	and	6	datasets.	
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Figure	4.	Conserved	activation	network.	(a)	Schematic	profiles	of	two	peaking	
genes,	 with	 temporal	 precedence	 indicated	 by	 the	 arrow.	 (b)	 Conserved	
temporal	 precedence	 between	 IEGs	 (light	 blue	 nodes),	 transcription	 factors	
(yellow	 nodes)	 non-coding	 RNA	 (grey	 nodes)	 and	 other	 protein-coding	 genes	
(green	nodes)	 is	shown	by	directed	edges.	A	subset	of	IEGs	in	this	network	are	
also	transcription	factors	(FOS,	KLF6,	FOSB,	BHLHE40,	JUN,	and	FOSL1).	
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Figure	5.	Transcriptional	dynamics	of	 genes	 classified	 to	 the	peak	model.	
Scatterplots	 of	 log	 fold	 change	 against	 the	 time	 of	 peaking	 for	 selected	 genes,	
with	conserved	temporal	precedence	indicated	by	arrows	for	PMDM_LPS	(a)	and	
MCF7_EGF1	(b).	FOS	peaks	earliest	and	has	many	conserved	temporal	relations	
to	later	peaking	genes,	while	EHD1	peaks	late	and	has	many	conserved	temporal	
orderings	with	earlier	peaking	genes.	
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