46 research outputs found

    A Unique Carrier for Delivery of Therapeutic Compounds beyond the Blood-Brain Barrier

    Get PDF
    BACKGROUND: Therapeutic intervention in many neurological diseases is thwarted by the physical obstacle formed by the blood-brain barrier (BBB) that excludes most drugs from entering the brain from the blood. Thus, identifying efficacious modes of drug delivery to the brain remains a "holy grail" in molecular medicine and nanobiotechnology. Brain capillaries, that comprise the BBB, possess an endogenous receptor that ferries an iron-transport protein, termed p97 (melanotransferrin), across the BBB. Here, we explored the hypothesis that therapeutic drugs "piggybacked" as conjugates of p97 can be shuttled across the BBB for treatment of otherwise inoperable brain tumors. APPROACH: Human p97 was covalently linked with the chemotherapeutic agents paclitaxel (PTAX) or adriamycin (ADR) and following intravenous injection, measured their penetration into brain tissue and other organs using radiolabeled and fluorescent derivatives of the drugs. In order to establish efficacy of the conjugates, we used nude mouse models to assess p97-drug conjugate activity towards glioma and mammary tumors growing subcutaneously compared to those growing intracranially. PRINCIPAL FINDINGS: Bolus-injected p97-drug conjugates and unconjugated p97 traversed brain capillary endothelium within a few minutes and accumulated to 1-2% of the injected by 24 hours. Brain delivery with p97-drug conjugates was quantitatively 10 fold higher than with free drug controls. Furthermore, both free-ADR and p97-ADR conjugates equally inhibited the subcutaneous growth of gliomas growing outside the brain. Evocatively, only p97-ADR conjugates significantly prolonged the survival of animals bearing intracranial gliomas or mammary tumors when compared to similar cumulated doses of free-ADR. SIGNIFICANCE: This study provides the initial proof of concept for p97 as a carrier capable of shuttling therapeutic levels of drugs from the blood to the brain for the treatment of neurological disorders, including classes of resident and metastatic brain tumors. It may be prudent, therefore, to consider implementation of this novel delivery platform in various clinical settings for therapeutic intervention in acute and chronic neurological diseases

    Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF

    Five insights from the Global Burden of Disease Study 2019

    Get PDF
    The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 provides a rules-based synthesis of the available evidence on levels and trends in health outcomes, a diverse set of risk factors, and health system responses. GBD 2019 covered 204 countries and territories, as well as first administrative level disaggregations for 22 countries, from 1990 to 2019. Because GBD is highly standardised and comprehensive, spanning both fatal and non-fatal outcomes, and uses a mutually exclusive and collectively exhaustive list of hierarchical disease and injury causes, the study provides a powerful basis for detailed and broad insights on global health trends and emerging challenges. GBD 2019 incorporates data from 281 586 sources and provides more than 3.5 billion estimates of health outcome and health system measures of interest for global, national, and subnational policy dialogue. All GBD estimates are publicly available and adhere to the Guidelines on Accurate and Transparent Health Estimate Reporting. From this vast amount of information, five key insights that are important for health, social, and economic development strategies have been distilled. These insights are subject to the many limitations outlined in each of the component GBD capstone papers.Peer reviewe

    Automatisierte Analyse der Koloniebildung

    No full text

    Therapeutic dosages of aspirin counteract the IL-6 induced pro-tumorigenic effects by slowing down the ribosome biogenesis rate

    Get PDF
    Chronic inflammation is a risk factor for the onset of cancer and the regular use of aspirin reduces the risk of cancer development. Here we showed that therapeutic dosages of aspirin counteract the pro-tumorigenic effects of the inflammatory cytokine interleukin(IL)-6 in cancer and non-cancer cell lines, and in mouse liver in vivo. We found that therapeutic dosages of aspirin prevented IL-6 from inducing the down-regulation of p53 expression and the acquisition of the epithelial mesenchymal transition (EMT) phenotypic changes in the cell lines. This was the result of a reduction in c-Myc mRNA transcription which was responsible for a down-regulation of the ribosomal protein S6 expression which, in turn, slowed down the rRNA maturation process, thus reducing the ribosome biogenesis rate. The perturbation of ribosome biogenesis hindered the Mdm2-mediated proteasomal degradation of p53, throughout the ribosomal protein-Mdm2-p53 pathway. P53 stabilization hindered the IL-6 induction of the EMT changes. The same effects were observed in livers from mice stimulated with IL-6 and treated with aspirin. It is worth noting that aspirin down-regulated ribosome biogenesis, stabilized p53 and up-regulated E-cadherin expression in unstimulated control cells also. In conclusion, these data showed that therapeutic dosages of aspirin increase the p53-mediated tumor-suppressor activity of the cells thus being in this way able to reduce the risk of cancer onset, either or not linked to chronic inflammatory processes
    corecore