22 research outputs found

    Matrix metalloproteinases in human spontaneous intracerebral hemorrhage: an update

    Get PDF
    Background: In default of a plausible and satisfactory causal treatment for hemorrhagic stroke, a role of matrix metalloproteinases (MMPs) in the pathogenesis of cerebrovascular diseases has recently been widely discussed. The well-known impact of MMPs on extracellular matrix destruction triggered by inflammation as a foundation for several diseases, including stroke, is very much in evidence. Newly, some additional aspects of MMP function considering their intracellular activity crucial for neuronal death following ischemic brain damage have emerged. The effect of blood-brain barrier disruption caused by MMPs on the prognosis in patients suffering from spontaneous intracerebral hemorrhage (ICH) has been of interest since it throws a new light upon the pathogenesis, course and possible therapeutic approaches for this least treatable and at the same time most life-threatening form of stroke. Hence, we primarily aimed to review the current clinical knowledge on the significance of metalloproteinase activation in the course of spontaneous intracranial hemorrhage in humans. We also provide a brief characterization of the MMP enzyme family and report on the latest findings on issues arising from experimental studies. Methods: A Medline search using the following key words was performed: matrix metalloproteinases + spontaneous intracerebral hemorrhage/intracranial hemorrhage/bleeding/hemorrhagic stroke. We accepted studies reporting on MMP expression in adult patients with spontaneous ICH, as well as its relation to radiological and clinical features and patients’ outcome. For the final review, 18 clinical studies were considered. MMP inhibition was reviewed on the basis of 11 relevant experimental studies. Also, some relevant reports on the biology of MMPs and their pathophysiology in ICH were reviewed. Results and Conclusions: Many studies provide convincing evidence of a detrimental role of MMPs in ICH, stressing their association with neuroinflammation. The role of MMPs in hemorrhagic stroke appears critical for hematoma and brain edema growth as well as for neuronal death, which are understood as secondary brain injury and may have a considerable clinical impact. Although data on human spontaneous ICH are scarce and mostly based on small populations, they reveal the apparent correlation between MMPs and clinical and radiological ICH features as well as the functional outcome, which might rationalize future therapeutic strategies. However, attempts at MMP inhibition in spontaneous ICH have solely been made under experimental conditions and were associated with a wide range of possible side effects. Therefore, further comprehensive, elucidating investigations in this field are vital before any conclusions could be translated to humans. Copyright (C) 2012 S. Karger AG, Base

    Neuroinflammation after intracerebral hemorrhage

    Get PDF
    Spontaneous intracerebral hemorrhage (ICH) is a particularly severe type of stroke for which no specific treatment has been established yet. Although preclinical models of ICH have substantial methodological limitations, important insight into the pathophysiology has been gained. Mounting evidence suggests an important contribution of inflammatory mechanisms to brain damage and potential repair. Neuroinflammation evoked by intracerebral blood involves the activation of resident microglia, the infiltration of systemic immune cells and the production of cytokines, chemokines, extracellular proteases and reactive oxygen species (ROS). Previous studies focused on innate immunity including microglia, monocytes and granulocytes. More recently, the role of adaptive immune cells has received increasing attention. Little is currently known about the interactions among different immune cell populations in the setting of ICH. Nevertheless, immunomodulatory strategies are already being explored in ICH. To improve the chances of translation from preclinical models to patients, a better characterization of the neuroinflammation in patients is desirable
    corecore