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Spontaneous intracerebral hemorrhage (ICH) is a particularly severe type of stroke for
which no specific treatment has been established yet. Although preclinical models of
ICH have substantial methodological limitations, important insight into the pathophysiology
has been gained. Mounting evidence suggests an important contribution of inflammatory
mechanisms to brain damage and potential repair. Neuroinflammation evoked by
intracerebral blood involves the activation of resident microglia, the infiltration of systemic
immune cells and the production of cytokines, chemokines, extracellular proteases and
reactive oxygen species (ROS). Previous studies focused on innate immunity including
microglia, monocytes and granulocytes. More recently, the role of adaptive immune cells
has received increasing attention. Little is currently known about the interactions among
different immune cell populations in the setting of ICH. Nevertheless, immunomodulatory
strategies are already being explored in ICH. To improve the chances of translation
from preclinical models to patients, a better characterization of the neuroinflammation in
patients is desirable.
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INTRODUCTION
Intracerebral hemorrhages (ICH) account for 10–15% of all
strokes (Qureshi et al., 2009). It is a particularly severe stroke
subtype that is associated with a mortality rate of 30–50%.
Moreover, 74% of the survivors remain functionally dependent
12 months after the ictus (van Asch et al., 2010). Currently, the
overall incidence of ICH is 24.6 per 100,000 person per year
(van Asch et al., 2010) but incidence is expected to have doubled
by 2050 (Qureshi et al., 2001) due to aging and the spreading
use of anticoagulants (Wang, 2010). Intracerebral hemorrhages
is strongly associated with cerebral microvascular diseases (Xi
et al., 2006). The most frequent underlying disorder is hyper-
tensive microangiopathy which predominantly manifests in deep
cerebral structures (basal ganglia, brain stem and cerebellum)
(Fisher, 1971, 2003). In the elderly, cerebral amyloid angiopathy
develops in cortical arteriolar and venular microvessels (Thanvi
and Robinson, 2006). Intracerebral hemorrhages in association
with the use of oral anticoagulants is increasingly frequently
encountered. Hemorrhage originating from aneurysms or vas-
cular malformations is less frequent (Qureshi et al., 2001). Risk
factors for ICH include genetic variants of apolipoprotein E,
ethnic differences and life style factors such as smoking and
alcohol intake (O’Donnell et al., 2010). Several determinants of
outcome have been clearly identified. Predictors of poor clinical
outcome are the initial hematoma volume, hematoma expansion
during the first day, location of the hematoma, extent of brain
edema, age and neurological status on admission (Hanley, 2009;
Mendelow et al., 2011; Kuramatsu et al., 2013). Although several
of these factors are potentially modifiable, no effective medical or
surgical therapy has been firmly established for acute ICH beyond

treatment in dedicated stroke and critical care units (Steiner et al.,
2006, 2014; Xi et al., 2006; Morgenstern et al., 2010; Keep et al.,
2012). Current efforts in clinical trials focus on blood pressure
control (Anderson et al., 2013), modified surgical approaches or
hemostasis in selected patients (Mayer et al., 2008; Morgan et al.,
2008; Newell et al., 2011; Ziai et al., 2014). Despite the lack of
evidence from randomized clinical trials, specialized neurovas-
cular centers offer medical and surgical therapies for selected
patients but otherwise ICH therapy remains supportive within a
framework of general critical care management (Kuramatsu et al.,
2013).

The need for new therapeutic approaches for ICH has
prompted a search for the molecular and cellular mechanisms
that underlie early and delayed brain damage after ICH. Clearly,
several research themes are shared with other acute and chronic
degenerative brain disorders. However, the appearance of extra-
cellular blood in the brain, that results in the release of the
hemoglobin constituents heme and iron, triggers specific patho-
physiological cascades or modifies the timing of other processes.

In particular, there is increasing evidence that inflammatory
mechanisms participate in early and delayed phases after ICH.
After reviewing some limitations of preclinical modeling of ICH,
the present review will summarize the evidence supporting an
essential role of inflammation to brain damage and potential
repair after ICH.

PRECLINICAL MODELS OF ICH
Animal models of ICH have been established in many different
species (for review see James et al., 2008). A major limita-
tion of most models is that an invasive procedure is required
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to induce the hemorrhage that inadvertently implies a limited
brain trauma. The most frequently used methods and species,
respectively, are the intracerebral injection of autologous blood
or bacterial collagenase in rodents (MacLellan et al., 2008, 2010).
Although both models are suitable to induce hematomas of
various sizes and location, the differences between these models
may influence the pathomechanisms of ICH and the neurological
outcome.

Injection of autologous blood (Bullock et al., 1984) creates
a single large bleeding and allows studying the mechanisms of
hemorrhage-induced neuronal damage. However, it fails to repro-
duce the aspect of continuing bleeding and hematoma expansion.
Secondary hematoma enlargement occurs in about 1/3 of patients
during the first day after ICH and is an important predictor of
poor neurological outcome (Brott et al., 1997; Davis et al., 2006).
In contrast, injection of bacterial collagenase (Rosenberg et al.,
1990) dissolves the basal lamina of small cerebral blood vessels
and results in continuous parenchymal bleeding for several hours
(MacLellan et al., 2008). However, the vascular source of bleeding
in the collagenase model differs from most human ICH in which
bleeding is of penetrating arteriolar origin (Clark et al., 1998;
Wang et al., 2003; Tang et al., 2004). Another disadvantage of
this model is that higher doses of collagenase can induce direct
neurotoxicity (Matsushita et al., 2000; Chu et al., 2004) which
may complicate the interpretation of results with neuroprotective
strategies.

The size of the hematoma, which determines outcome both
in man (Broderick et al., 1993) and in rodents (MacLellan et al.,
2006), can be varied in both ICH-models by changing the injected
blood volume or collagenase dose. However, injection of a higher
blood volume may produce difficulties by the injected blood
spreading along the corpus callosum or flowing back through
the needle insertion canal. These problems can be reduced by
using the double injection method (Belayev et al., 2003), where
a small amount of blood is allowed to clot and followed by the
injection of the remaining blood volume. In comparison with
the blood injection model where the tissue is split apart by the
hematoma, collagenase induces a less dense hemorrhage which
infiltrates the parenchyma (MacLellan et al., 2008) resulting in
bigger hematoma volume in case of matched blood content
between the two models (Mracsko et al., 2014).

In both models, macroscopic hematoma size decreases already
during the first days after surgery (Mracsko et al., 2014), and
the hematoma resolves completely in about 21 days (Zhao et al.,
2007). In contrast, the resolution of the hematoma takes sev-
eral weeks in patients and usually leaves a cavity in the brain
with focal atrophy and ventricular enlargement (Dolinskas et al.,
1977).

In conclusion, both ICH methods have their advantages and
limitations. These differences should be carefully considered
when choosing a model to address the outcome parameters of
interest and when interpreting the findings.

DELETERIOUS MECHANICAL EFFECTS OF THE HEMATOMA
Primary brain injury after ICH is caused by the tissue disruption
due to parenchymal blood accumulation and the mechanical
damage associated with the mass effect (Figure 1). Besides

treating increased intracranial pressure (Helbok et al., 2011), sur-
gical interventions to remove the blood clot and release the pres-
sure would appear a plausible approach in this phase (Gautschi
and Schaller, 2013). In about one third of patients (Kazui et al.,
1996; Brott et al., 1997), re-bleeding and the expansion of the
hemorrhage within the first day after the ictus further exacerbates
the mass effect and thus neurological damage. Preventing this
complication by aggressive antihypertensive therapy or by admin-
istration of hemostatic factors may prevent secondary hematoma
growth. (Sakamoto et al., 2013). However, evidence for clinical
efficacy is limited. The concept of brain damage resulting from
peri-hematomal ischemia induced by the increased intracranial
pressure has not been confirmed in studies using positron emis-
sion tomography in patients (Zazulia et al., 2001). However, a
recent magnetic resonance imaging (MRI) study found ischemic
events in one third of ICH patients within 1 month after the ictus
(Menon et al., 2012).

Immediately after ICH, peri-hematomal edema develops
which increases intracranial pressure and contributes to the mass
effect (Xi et al., 2006). Edema in ICH is associated with higher
in-hospital mortality (Staykov et al., 2011). In animal models,
edema peaks already 3–4 days after ICH-induction (Xi et al.,
1998). In contrast, the edema expands in ICH patients until at
least 10 days after the ictus (Staykov et al., 2011). In the first
hours after ICH, edema is mainly formed by plasma egress due
to the increased hydrostatic pressure and the damaged blood-
brain barrier (BBB); edema also results from extruded serum
during clot retraction (Wagner et al., 1996). Later on, throm-
bin production, erythrocyte lysis and the triggered inflamma-
tory processes are responsible for edema formation (Xi et al.,
2001a).

MECHANISMS OF SECONDARY BRAIN DAMAGE
Besides the mechanical tissue damage caused by the initial
hematoma, injured brain cells and the extravasated components
of the blood clot trigger a complex sequence of parallel and
sequential deleterious mechanisms including inflammatory and
oxidative stress pathways (Aronowski and Zhao, 2011; Figure 1).

Activation of hemostatic mechanisms is a physiological tis-
sue response to hemorrhage to stop the bleeding. Thrombin is
essential for the blood coagulation processes and gets activated
within the first hour after ICH (Gong et al., 2008). Intracerebral
injection of thrombin leads to early brain edema formation by
direct opening of the BBB (Lee et al., 1997) and to neuronal
damage at days 1 and 3 after ICH (Gong et al., 2008). High
concentrations of thrombin induce neuronal damage in vitro,
however, low concentrations are neuroprotective against various
insults including ischemia or oxidative stress (Vaughan et al.,
1995; Donovan et al., 1997; Striggow et al., 2000). Moreover,
thrombin has an important role in brain recovery after intracere-
bral hemorrhage (Hua et al., 2009) possibly via the initiation of
neurogenesis (Yang et al., 2008) and angiogenesis (Tarzami et al.,
2006; Tsopanoglou and Maragoudakis, 2007). Therefore, the role
of thrombin after ICH remains controversial (Xi et al., 2003, 2006;
Keep et al., 2012).

The lysis of erythrocytes within the first days after ICH leads
to the release of hemoglobin which is then converted by the heme
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FIGURE 1 | Primary and secondary brain damage after intracerebral hemorrhage.

oxygenase-1 enzyme (HO-1) into neurotoxic components such
as heme and iron which are major contributors to secondary
brain injury (Wagner et al., 2003; Wu et al., 2003; Keep et al.,
2012). Intracerebral injection of lyzed erythrocytes or hemoglobin
and iron result in brain edema formation and neuronal damage
(Xi et al., 1998; Huang et al., 2002). The proposed mechanism
of heme- and iron-induced neurotoxicity is the induction of
oxidative stress due to the activity of HO-1 (Koeppen et al.,
2004; Wang and Doré, 2007a) and the iron-mediated free radical
production via the Fenton-reaction (Wu et al., 2003, 2011; Clark
et al., 2008).

The inflammatory reaction comprising both cellular and
molecular components is a common response of the central ner-
vous system (CNS) to various stimuli. Neuroinflammation after
ICH involves the early activation of resident microglia, release of
proinflammatory mediators and the influx of peripheral leuko-
cytes and has major role in the pathophysiology of secondary
brain damage (Wang and Doré, 2007b; Wang, 2010). Components
of both innate and adaptive immune system take part of ICH-
induced neuroinflammation. At present, the involvement of anti-
gen specific immune processes remains unclear in both ischemic
and hemorrhagic stroke (Iadecola and Anrather, 2011).

MICROGLIA/MACROPHAGES
The first activated innate immune cells are microglia which
reside in the CNS. They continuously scan the extracellular
brain environment and can be activated within minutes after
tissue damage. Danger-associated molecular patterns including
ATP, neurotransmitters, nucleic acids, heat shock proteins and
high mobility group box 1 are released to the extracellular space
from necrotic neurons after ICH (Ohnishi et al., 2011). These

stimuli act on distinct microglia receptors including Toll-like
receptors (TLRs) and the receptor of advanced glycosylation end-
products (Taylor and Sansing, 2013). Several TLRs including
TLR4 are involved in the neuroinflammatory processes after ICH
(Fang et al., 2013). TLR4 is predominantly expressed in CD11b+
microglial cells and is upregulated early after ICH subsequently
leading to the upregulation of proinflammatory genes via nuclear
factor-κB (NF-κB) signaling (Teng et al., 2009; Lin et al., 2012).
Besides danger signals originating from damaged neuronal cells,
blood components such as thrombin, fibrin and heme can also
trigger inflammatory processes through the TLR/NF-κB pathway
(Loftspring et al., 2010; Lin et al., 2012; Wang et al., 2014).
Hemoglobin triggers an inflammatory response via assembly of
TLR2/TLR4 heterodimers (Wang et al., 2014). Experimental and
clinical data suggest that TLR4 contributes to neuronal dam-
age in ICH. TLR4 deficiency (Teng et al., 2009; Sansing et al.,
2011b; Lin et al., 2012) or blockade (Wang et al., 2013) lowers
brain water content (i.e., edema) and reduces neurological deficit.
In patients, higher expression of TLR2 and TLR4 in mono-
cytes on admission was independently associated with poor out-
come (Rodríguez-Yáñez et al., 2012). Therefore, antagonization
of the TLR4 signaling may represent a therapeutic target after
ICH.

Besides TLRs, microglia can be activated by thrombin via the
proteinase activated receptor-1 (PAR-1) and mitogen-activated
protein kinase signaling pathways (Fujimoto et al., 2007; Ohnishi
et al., 2007). This leads to increased production of tumor
necrosis factor-α (TNF-α) and neuronal death (Ohnishi et al.,
2010). Microglia endocytose erythrocyte remnants via scavenger
receptors such as CD36, which initiates microglial activation
(Aronowski and Zhao, 2011; Fang et al., 2014).
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Upon stimulation, microglia cells will be rounded gain-
ing an ameboid appearance and high phagocytic activity
(Kreutzberg, 1996). They are difficult to distinguish from acti-
vated macrophages which express the same cellular surface mark-
ers including CD11b, Iba-1, isolectin B4 (Ginhoux et al., 2010).
However, multi-parameter characterization by flow cytometry
allows the definition of microglia population as CD45low/CD11b+
cells (Campanella et al., 2002; D’Mello et al., 2009; Parney et al.,
2009; Gabrusiewicz et al., 2011; Patel et al., 2013; Mracsko et al.,
2014; Tang et al., 2014). Both macrophages and microglia can
have either the classically activated M1 or the alternatively acti-
vated M2 phenotype (Kigerl et al., 2009; David and Kroner,
2011). M1 polarized microglia produce proinflammatory, largely
deleterious cytokines such as TNF-α, interleukin-1β (IL-1β) or
IL-6 and pro-oxidant enzymes such as inducible nitric oxide
synthase (Liao et al., 2012; Kobayashi et al., 2013). In con-
trast, M2 polarized microglia have arginase activity, produce
neurotrophic factors and IL-10. The M2 microglia phenotype
has been associated with neuroprotective and regenerative effects
after brain injury (Ponomarev et al., 2007). Due to this polarity,
microglia/macrophage can exert controversial effects in brain
diseases and injuries (Taylor and Sansing, 2013).

Microglial activation takes place in various neurological disor-
ders including CNS and peripheral infections, neurodegenerative
diseases, traumatic brain injury, ischemic and hemorrhagic stroke
(Suzuki et al., 2011; Püntener et al., 2012; Hernandez-Ontiveros
et al., 2013; Patel et al., 2013; Taylor and Sansing, 2013; Doens and
Fernández, 2014). Besides the clearance of cell debris, microglia
play also an important role in the phagocytosis of blood compo-
nents released into the brain parenchyma (Aronowski and Zhao,
2011). In experimental ICH, microglial activation occurs as early
as 1 h following collagenase injection (Wang and Doré, 2007a)
and 4 h after autologous blood injection (Xue and Del Bigio,
2000). The number of activated microglia/macrophages peaks at
72 h and returns to normal level 3–4 weeks after ICH (Wang, 2010;
Yabluchanskiy et al., 2010; Sansing et al., 2011b).

Upon various stimuli, microglia and brain macrophages pro-
duce proinflammatory cytokines including TNF-α and IL-1β

(Wang and Doré, 2007b), chemokines (Matsushita et al., 2014)
and reactive oxygen species (ROS; Yang et al., 2014a). Beyond
the neurotoxic cytokines, chemokines such as CXCL2 produced
by microglia (Shiratori et al., 2010) have chemotactic activity
on neutrophils and thus exacerbate the inflammatory reaction
(Tessier et al., 1997). Moreover, M1 polarized microglia create
microglia-T cell crosstalk due to antigen presentation via MHCII
expression (Starossom et al., 2012). Thus, microglia also enforce
early neuroinflammation by recruiting and activating blood-
derived leukocytes which may worsen ICH-induced neuronal
damage.

On the other hand, microglia play a key role in hematoma
resolution and therefore in the recovery phase after ICH. A more
effective and faster clearance of intracerebral blood could limit the
inflammatory processes that are triggered by blood constituents
in the brain parenchyma (Zhao et al., 2007). Moreover, the
chemokine receptor CX3CR1 is required for M2 polarization of
microglia facilitating recovery after ICH (Taylor and Sansing,
2013).

The essential pathophysiological role of microglia/macro-
phages after ICH suggests a therapeutic potential. On the other
hand, microglial functions are diverse and cannot be classified
as either good or bad. Moreover, different microglial subsets
may send opposing signals, and predominant functional effects
may differ depending on timing after the event (cp ischemia;
Lalancette-Hébert et al., 2007).

In experimental ICH, blockade of TLR4 reduced neuronal
loss and edema formation and improved neurological function.
The effects resulted from inhibition of downstream signal-
ing mechanisms and the lower expression of proinflammatory
cytokines (Wang et al., 2013). In another study, the TLR4
inhibitor TAK-242 upregulated CD36 scavenger receptor expres-
sion thereby promoting faster hematoma resolution and atten-
uating neurological deficit (Fang et al., 2014). Minocycline
is a tetracycline-based molecule which can inhibit microglia
activation (Tikka and Koistinaho, 2001). Minocyclin has been
tested in numerous studies to moderate neuronal damage after
ICH. Minocycline reduces thrombin-induced microglial TNF-α
and IL-1β expression in vitro (Wu et al., 2009). In the same
study, minocycline reduced brain edema 3 days after intrac-
erebral blood injection, diminished neurological deficit and
decreased brain atrophy 28 days following ICH (Wu et al.,
2010). These effects were accompanied by reduced numbers
of microglia/macrophages around the hematoma 5 days fol-
lowing ICH (Szymanska et al., 2006). Others found preserved
microvessels along with reduced brain water content, and lower
levels of TNF-α and matrix metalloproteinase-12 (MMP-12) in
minocycline-treated rats (Wasserman and Schlichter, 2007). In
these studies, the treatment was applied from up to 6 h after
induction of ICH suggesting clinical relevance. As a consequence,
a randomized,-single-blinded clinical trial of minocycline in ICH
has been initiated (A Pilot Study of Minocycline in Intrac-
erebral Hemorrhage Patients (MACH); NCT01805895). Further
molecules targeting microglia activation and function have been
recently tested after ICH. The mitogen-activated protein kinase
inhibitor sesamin (Ohnishi et al., 2013), as well as sinomenine
(Yang et al., 2014a) and curcumin (Yang et al., 2014c) with anti-
inflammatory and anti-oxidant properties were neuroprotective
in ICH. However, their distinct mechanisms of action require
further investigation.

Hematoma resolution by microglia/macrophages has also
been recognized as a therapeutic target after ICH. Peroxisome
proliferator-activated receptor-γ agonist induced CD36-mediated
clearance of erythrocytes by microglia in vitro. It promoted
hematoma resolution, reduced neuronal loss and neurological
deficit in vivo (Zhao et al., 2007, 2009). Therefore, besides block-
ing the acute detrimental effects of microglia activation, stimulat-
ing microglial phagocytosis and thus enhancing recovery may also
have therapeutic potential.

BBB BREAKDOWN AND INVASION OF SYSTEMIC IMMUNE
CELLS
The physical BBB is formed by capillary endothelial cells, which
are connected via tight junctions resulting in very low permeabil-
ity. Besides endothelial cells, perivascular cells such as pericytes
and astrocytes and the extracellular matrix have an important
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regulatory role on BBB function. Increased permeability of the
BBB can be caused by changes in the para- and transcellu-
lar routes or by disruption of the extracellular matrix (Keep
et al., 2014; Knowland et al., 2014). In ischemic stroke, BBB
dysfunction results from insufficient oxygen and glucose supply
(Ronaldson and Davis, 2012). In contrast, the absence of ICH-
induced ischemic damage (Zazulia et al., 2001) suggests that other
mechanisms induce BBB hyperpermeability in ICH. Thrombin
has been shown to induce BBB disruption via proteinase activated
receptor-1 mediated mechanisms (Liu et al., 2010). Hemoglobin
itself and its degradation products heme and iron also increase
permeability of the BBB (Yang et al., 2013). Accordingly, the iron
chelator deferoxamine (Nakamura et al., 2004; Okauchi et al.,
2010) and HO inhibitors (Gong et al., 2006) reduce ICH-induced
brain edema.

Matrix metalloproteinases belong to the group of endopep-
tidases just as other proteases like serine or cysteine proteases.
They have important role in the remodeling of extracellular
matrix but under inflammatory conditions activation of MMPs
results in BBB dysfunction, increased capillary permeability and
brain edema formation after ICH (Rosenberg and Navratil, 1997).
Matrix metalloproteinases have been intensively studied in ICH
in the last two decades and the available information on their
role in ICH has been reviewed in detail (Wang and Doré, 2007b;
Florczak-Rzepka et al., 2012). Although inhibition of MMPs may
decrease ICH-induced brain injury, MMPs also have an important
role in the regulation of neurogenesis, myelin function and axonal
growth (Pepper, 2001; Kaczmarek et al., 2002; Cunningham et al.,
2005). Therefore rather the modulation than long-term inhibition
of MMPs may be considered for ICH treatment.

The strict regulation of the immune cell infiltration into the
brain parenchyma through the immunological BBB plays an
important role in the immune privilege of the CNS (Pachter
et al., 2003). During neuroinflammatory processes, the expression
of adhesion molecules on leukocytes and of their ligands on
endothelial cells in postcapillary venules increases. As a conse-
quence, leukocytes adhere to the wall of these venules. Infiltration
through the BBB involves rolling, adhesion and transendothelial
migration of leukocytes. Adhesion molecules that participate in
this process are classified into three types: selectins, the super-
family of immunoglobulins and the integrins (Brea et al., 2009;
Iadecola and Anrather, 2011). The expression of intracellular
adhesion molecule-1 is upregulated already hours after ICH
(Gong et al., 2000; Yang et al., 2011). The vascular adhesion
protein-1 has been also shown to be upregulated after ICH, and
its inhibitors reduced neutrophil invasion and brain damage (Ma
et al., 2011).

The brain infiltrating leukocytes produce proinflammatory
cytokines and MMPs leading to further disruption of the BBB
(Xi et al., 2006; Wang and Doré, 2007b; Aronowski and Zhao,
2011). Therefore, peripheral leukocytes and the BBB are in tight
reciprocal connection that makes it difficult to evaluate the effect
of distinct compounds on BBB integrity. Essentially, any com-
pound that influences the ICH-induced inflammatory reaction
also affects BBB integrity and vica versa.

In experimental and clinical ICH blood-borne leukocytes
invade the hemorrhagic brain (Lee et al., 1975; Del Bigio et al.,

1996; Gong et al., 2000; Xue and Del Bigio, 2000; Mayne et al.,
2001a; Peeling et al., 2001; Wang and Tsirka, 2005). In principle,
leukocytes found in the brain after ICH could originate from
the inflowing blood in the hematoma. Alternatively, systemic
immune cells may actively migrate across the BBB to enter the
brain (Xi et al., 2006). The origin of leukocytes located in the
brain after ICH can be determined by using the leukocyte marker
CD45.1 transgenic mice in blood injection models (Sansing
et al., 2011b; Hammond et al., 2012; Mracsko et al., 2014). In
this approach, blood from CD45.2 expressing wild type mice is
injected into the brain of CD45.1 expressing mice or vice versa
and brain located leukocytes are analyzed by flow cytometry
for CD45.2 and CD45.1 expression. These studies agree that
already 1 day after blood injection the majority of leukocytes
isolated from the brain originates from the blood circulation
rather than from the injected blood. A methodological limita-
tion of this approach is that the traumatic injury caused by
the insertion of the injection needle alone results in a relatively
high number of infiltrating leukocyte in sham operated animals
(Loftspring et al., 2009; Mracsko et al., 2014). Therefore, dif-
ferences of injection techniques and even needles can result in
discrepancies between different workgroups regarding infiltrating
cell numbers.

MONOCYTES
Monocytes are produced by bone marrow from monoblasts and
mature into different types of macrophages. In the CNS the
renewal of the microglia cell population takes place by local
expansion and, at lower rate, by replenishment by circulating
monocytes (Ajami et al., 2007). As mentioned above, the dis-
tinction of infiltrating monocyte/macrophages from microglia
is difficult due to the identical surface activation markers they
express. To distinguish the roles and distributions of microglia
and peripheral monocytes, several studies on cerebral ischemia
used bone marrow chimeric mice generated by transplanting
green fluorescent protein transgenic bone marrow into irradi-
ated wild-type recipients (Schilling et al., 2003, 2005; Tanaka
et al., 2003). So far the application of this approach in ICH is
limited to one study (Hammond et al., 2014). Taking advantage
of differential CD45 expression between microglia and mono-
cyte/macrophages, flow cytometry studies have also differenti-
ated infiltrating monocytes (Sansing et al., 2011a,b; Hammond
et al., 2012; Mracsko et al., 2014). Monocytes invade already
within 12 h after ICH outnumbering the neutrophil population
(Hammond et al., 2012), and their number peaks by day 5
(Mracsko et al., 2014). Monocyte infiltration is reduced after
neutrophil depletion (Sansing et al., 2011a) or in TLR4 defi-
ciency (Sansing et al., 2011b). The monocyte chemoattractant
protein-1 and its receptor CC chemokine receptor 2 (CCR2)
are involved in the migration of monocytes into the hemor-
rhagic brain (Yao and Tsirka, 2012b). Monocyte chemoattractant
protein-1 is elevated in the brain 24 h after experimental ICH
(Chang et al., 2011; Ma et al., 2011) as well as in the serum of
patients associated with poor functional outcome 7 days following
ICH (Hammond et al., 2014). Accordingly, chimeric mice with
wild type CNS and CCR2 deficiency exhibit attenuated motor
dysfunction after ICH (Hammond et al., 2014). At the same
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time, CCR2+ inflammatory monocytes seem to be important
regulators of hematoma clearance and functional recovery after
ICH (Yao and Tsirka, 2012a).

GRANULOCYTES
Neutrophils are the leukocyte population that immigrates first
into the brain after injury. In ICH, infiltrating neutrophils were
found in and around the hematoma as early as 4 h after
collagenase-induced ICH in mice (Wang and Tsirka, 2005).
Their number peaks at 3–5 days after ICH (Gong et al., 2000;
Xue and Del Bigio, 2000; Mracsko et al., 2014). Although the
temporal pattern of neutrophil infiltration is similar in blood
and collagenase injection models, higher neutrophil numbers
are found after collagenase than after blood injection (Xue and
Del Bigio, 2000; Mracsko et al., 2014). In experimental ICH,
infiltrating neutrophils undergo apoptosis 2 days after entering
the hematoma (Savill, 1997). Molecules released from dying
leukocytes may further stimulate microglia/macrophages and
exacerbate the neuroinflammatory process (Stern et al., 1996;
Wang, 2010). Neutrophil accumulation in the blood vessels
around the hematoma was observed already 6 h after the ictus
(Wisniewski, 1961). In the peri-hematomal tissue obtained from
ICH patients during craniotomy, neutrophil (and lymphocyte)
infiltration further increased 12–24 h after ICH and correlated
with the number of TUNEL positive cells (Guo et al., 2006).
It should be noted however that in ischemic stroke histological
techniques labeling components of the neurovascular unit showed
that polymorphonuclear granulocytes were mainly located in the
luminal surfaces or perivascular spaces of cerebral vessels and no
granulocytes infiltrated the brain parenchyma (Enzmann et al.,
2013). So far, no similar data are available for ICH.

Recent studies suggest an important role of activated
microglia in neutrophil recruitment into the hemorrhagic brain.
Heme-induced TLR4 activation on microglia increases CXCL2
production, which interacts with CXCR2 on the surface of
neutrophils resulting in chemoattraction (Zarbock and Ley,
2009). Accordingly, TLR4-deficient mice show reduced neu-
trophil and monocyte infiltration 3 days after ICH (Sansing et al.,
2011b).

Granulocytes appear to have mainly deleterious effects on the
brain after ICH. Neutrophil depletion by intravenous injection of
anti-polymorphonuclear neutrophil (anti-PMN) serum reduced
BBB breakdown, axonal injury and neurological deficit (Moxon-
Emre and Schlichter, 2011). After cerebral ischemia, anti-PMN
therapy prevented endothelial dysfunction and thrombolysis-
induced hemorrhagic transformation in another study (Gautier
et al., 2009). As professional phagocytes, neutrophils use phago-
somes containing digestive and oxidative compounds. During
phagocytosis they produce an oxidative burst resulting in the
release of ROSs via NADPH oxidase and myeloperoxidase
(Hampton et al., 1998). Although these processes are needed for
antimicrobial defence, high ROS levels due to microglial activa-
tion and neutrophil infiltration contribute to poor outcome after
ICH (Nguyen et al., 2007; Han et al., 2008). The free radical scav-
enger edaravone decreases brain edema and neurological deficit
after ICH (Nakamura et al., 2008). Other molecules with free
radical trapping properties have been tested in ICH as reviewed

earlier (Wang and Doré, 2007b) supporting the important role
of ROS in secondary brain injury and their therapeutic potential
after ICH.

Besides microglia/macrophages, the expression of the neu-
rotoxic TNF-α has also been shown in neutrophils (Mayne
et al., 2001b; Nguyen et al., 2007; Wasserman and Schlichter,
2007). Neutrophils may also recruit monocyte/macrophages
amplifying inflammatory processes (Soehnlein and Lindbom,
2010). Accordingly, anti-PMN therapy decreased the number
of infiltrating monocyte/macrophages around the hematoma
and reduced glial scarring (Moxon-Emre and Schlichter,
2011).

CELLS OF THE ADAPTIVE IMMUNE SYSTEM
Mounting an antigen-specific immune response generally
requires several (5–7) days. As cellular parts of the adaptive
immune system, B cells participate in humoral immune
responses, while T cells are involved in cellular immunity. T
cells express either the CD4 or the CD8 cell surface marker
determining their function: modulating immune responses or
eliciting cytotoxicity.

Increasing evidence suggests an important role of adaptive
immunity and particularly T lymphocytes in secondary brain
damage after ischemia (Yilmaz et al., 2006; Iadecola and Anrather,
2011; Liesz et al., 2011; Chamorro et al., 2012). In contrast,
little is known about the role of lymphocytes after experimental
and clinical ICH. Lymphocytes were found in cerebrospinal fluid
early (starting at 6 h) following human ICH (Lee et al., 1975).
Lymphocytes were also detected in peri-hematomal brain tissue
obtained during craniotomy of ICH patients (Guo et al., 2006).
In contrast, most studies using animal models of ICH reported
more delayed infiltration of T cells 48–96 h after ICH (Xue
and Del Bigio, 2000, 2003; Loftspring et al., 2009). Using flow
cytometry, we found that CD4+ T cells are the predominating
brain infiltrating leukocyte population in mice already 1 day after
ICH and their number peaked at day 5 (Mracsko et al., 2014).
At the same time, infiltration of CD8+ T cell appears to be less
prominent in ICH compared to cerebral ischemia (Schwab et al.,
2001; Loftspring et al., 2009; Chaitanya et al., 2010; Mracsko et al.,
2014).

An important unresolved question is whether T cell invasion
and activation is antigen dependent both in cerebral ischemia
and in ICH (Iadecola and Anrather, 2011). Along with other T
cell populations, both proinflammatory γδT cells and immuno-
suppressive regulatory T cells (Treg) infiltrate the hemorrhagic
brain (Gao et al., 2014). According to the neuroprotective role
of Treg in cerebral ischemia (Liesz et al., 2009), Treg transfer
also attenuated neurological deficit after ICH (Yang et al., 2014b).
The pathophysiological role of B cells and natural killer cells after
ICH has barely been studied to date. Their low rate of infiltration
(Mracsko et al., 2014) suggests a minor role in ICH-induced brain
injury.

Fingolimod is a modulator of the sphingosine 1-phosphate
receptor 1 and has been approved for the treatment of the relaps-
ing form of multiple sclerosis. Fingolimod downregulates the
expression of sphingosine receptors on T cells thereby inhibiting
their egress from lymphoid tissue (Chiba, 2005). Fingolimod
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reduced brain edema and improved neurological function
after experimental ICH in one study (Rolland et al., 2011).
Interestingly, it was recently tested in a Chinese clinical pilot study
(n = 23 patients) where it decreased peri-hematomal edema and
reduced neurological impairment compared with control individ-
uals (Fu et al., 2014). A better understanding of the mechanism of
activation and action of T cell population is needed.

HUMORAL INFLAMMATORY MEDIATORS
Nuclear factor-κB is a ubiquitous transcription factor that is a
critical regulator of numerous responses including inflamma-
tion (Barnes, 1996) and pro-inflammatory genes such as TNF-
α, IL-1β, nitric oxide synthase, HO-1 and intracellular adhesion
molecule-1 (Barnes and Karin, 1997; Emsley and Tyrrell, 2002).
Nuclear factor-κB has high sensitivity towards oxidative stress
(Grilli and Memo, 1999) and gets immediately activated in the
peri-hematomal brain tissue in both experimental (Hickenbot-
tom et al., 1999; Wagner, 2007) and human ICH (Wang et al.,
2011). Peroxisome proliferator-activated receptor-γ, a member
of the nuclear hormone receptor superfamily has been shown
to suppress NF-κB function leading to decreased inflamma-
tion and neuronal death, increased hematoma resolution and
improved functional outcome after experimental ICH (Zhao
et al., 2006). Information on the role of NF-κB in ICH has been
reviewed elsewhere in detail (Aronowski and Hall, 2005; Wagner,
2007).

Cytokines can be divided into pro- and anti-inflammatory
cytokines. Tumor necrosis factor-α is a pleiotropic cytokine which
is mainly produced by microglia/macrophages (Lambertsen et al.,
2005) and neutrophils (Mayne et al., 2001b). Tumor necrosis
factor-α plays a central role in extending neuronal damage after
CNS injury (Rodríguez-Yáñez and Castillo, 2008). Tumor necro-
sis factor-α knockout mice showed reduced ICH-induced brain
edema compared to wild type mice (Hua et al., 2006). Treatment
with TNF-α antibody after ICH attenuated microglia/macrophage
activation, reduced cleaved caspase-3 and resulted in less brain
edema and better neurological function (Mayne et al., 2001b;
Lei et al., 2013). The IL-1 cytokine family contains an increasing
number of members; the most important are IL-1α, IL-β and
the natural receptor antagonist IL-Ra (Luheshi et al., 2009).
In neuroinflammatory conditions, IL-1β is mostly produced by
microglia/macrophages and is neurotoxic (Pearson et al., 1999;
Vezzani et al., 1999). Overexpression of IL-1 receptor antagonist
decreased thrombin-induced brain edema (Masada et al., 2001),
BBB breakdown and neuronal loss (Greenhalgh et al., 2012).
Both TNF-α and IL-1 are overexpressed as early as 2 h after
experimental ICH (Xi et al., 2001b; Aronowski and Hall, 2005;
Wagner et al., 2006).

Interferon-γ (IFN-γ) is one of the main effector molecule
of T lymphocytes (Schroder et al., 2004) and T cells are the
major source of IFN-γ in cerebral ischemia (Liesz et al., 2009).
In contrast to the well-established expression pattern and role
of IFN-γ in ischemic stroke (Yilmaz et al., 2006; Liesz et al.,
2011), the role of this cytokine in ICH remains to be elucidated.
Interferon-γ protein expression was increased at 72 h after ICH
which was prevented by fingolimod treatment (Rolland et al.,
2011).

Clinical studies on the role of cytokines in ICH are limited
on serum measurements. Increased serum concentrations of IL-6
and IL-10 were found 24 h after ICH where IL-6 level corre-
lated with blood volume and the mass effect of the hemorrhage
(Dziedzic et al., 2002). In another study, elevated plasma levels of
TNF-α and IL-6 12 and 24 h after the ictus correlated with peri-
hematomal edema (Castillo et al., 2002). These reports support
the deleterious effect of proinflammatory cytokines after ICH.
Although cytokines may be promising therapeutic targets in ICH,
to date no clinical trials examining the effect of cytokine antago-
nization have been conducted.

IMAGING OF NEUROINFLAMMATION
Due to the spatial and temporal complexity of the neuroinflam-
matory processes, anatomical and functional in vivo imaging
techniques are increasingly recognized for diagnosis and follow-
up in patient care. Furthermore, the fast development of these
techniques already allows their implication for the understanding
of neuroinflammatory mechanisms in the cellular and molecular
level in experimental studies.

As microglia activation is an essential part of the neuroin-
flammatory response to cerebral injury and disease progres-
sion, it has become an important target for in vivo imaging of
neuroinflammation. Upon activation, the microglial translocator
protein (TSPO) is upregulated (Chauveau et al., 2008) and can
be detected by radiolabeled ligands for positron-emission tomog-
raphy (PET) or single-photon emission computed tomography
(SPECT; Winkeler et al., 2010; Chauveau et al., 2011; Ciarmiello,
2011; Kiferle et al., 2011).

To investigate the mechanisms underlying the trafficking of
systemic immune cells into the brain, contrast media targeting
endothelial selectin, ICAM and VCAM have been developed.
These include 125I-labeled gold nanorods (GdNRs) and 64Cu-
labeled nanoparticles conjugated with anti-ICAM-1 antibody
(Rossin et al., 2008; Shao et al., 2011) or iron oxide micropar-
ticles conjugated with anti-VCAM antibody (McAteer et al.,
2007; Hoyte et al., 2010) (for detailed review cp. Jacobs and
Tavitian, 2012)). Infiltrating leukocytes can be labelled either ex
vivo by incubation with a tracer or in vivo taking advantage
of their phagocytic properties. For ex vivo labelling 111In- or
99mTc-labeled compounds for SPECT or [18F] fluorodeoxyglu-
cose (FDG) for PET imaging have been developed (Wunder
et al., 2009). In vivo labelling is performed using MRI agents
including iron-oxide nanoparticles (Stuber et al., 2007), lipo-
somes encapsulating monodisperse single core superparamag-
netic iron-oxide particles (Soenen et al., 2010) or paramagnetic
lanthanide-based agents (Castelli et al., 2009; Stoll and Bendszus,
2010).

The above detailed labeling methods are increasingly used in
clinical and experimental studies to characterize inflammatory
processes in neurologic disorders including cerebral ischemia,
multiple sclerosis, Alzheimer’s and Parkinson’s disease (Jacobs
and Tavitian, 2012). In contrast, in vivo neuroimaging has
been barely used to investigate the ICH-induced inflamma-
tory processes. In collagenase-induced ICH, enhanced MRI with
microparticles of iron oxide targeted to VCAM-1 revealed the
maximal VCAM-1 expression 24 h after ICH which returned to
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baseline 5 days following hemorrhage induction (Gauberti et al.,
2013). However, so far we do not have neuroimaging data about
tracking leukocytes infiltrating the hemorrhagic brain.

CONCLUSIONS
Inflammatory processes are increasingly recognized as important
players in the pathophysiology of secondary brain damage after
ICH. There is now solid information on the infiltration pattern
of leukocytes in experimental ICH. The pathophysiological role
of specific leukocyte populations is beginning to be better under-
stood but little is known about the interactions among these
immune cells. Because of the delayed nature of brain damage after
ICH, adaptive immune cells may play an important role in the
subacute and the regenerative phases after ICH. Translation of
preclinical findings into the clinical setting is challenging because
of limitations of current animal models of ICH. Moreover, the
local and systemic neuroinflammatory response in ICH patients
remains to be better characterized.
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