21 research outputs found

    The effect of a high-grain diet on the rumen microbiome of goats with a special focus on anaerobic fungi

    Get PDF
    This work investigated the changes of the rumen microbiome of goats switched from a forage to a concentrate diet with special attention to anaerobic fungi (AF). Female goats were fed an alfalfa hay (AH) diet (0% grain; n = 4) for 20 days and were then abruptly shifted to a high-grain (HG) diet (40% corn grain, 60% AH; n = 4) and treated for another 10 days. Rumen content samples were collected from the cannulated animals at the end of each diet period (day 20 and 30). The microbiome structure was studied using high-throughput sequencing for bacteria, archaea (16S rRNA gene) and fungi (ITS2), accompanied by qPCR for each group. To further elucidate unclassified AF, clone library analyses were performed on the ITS1 spacer region. Rumen pH was significantly lower in HG diet fed goats, but did not induce subacute ruminal acidosis. HG diet altered prokaryotic communities, with a significant increase of Bacteroidetes and a decrease of Firmicutes. On the genus level Prevotella 1 was significantly boosted. Methanobrevibacter and Methanosphaera were the most abundant archaea regardless of the diet and HG induced a significant augmentation of unclassified Thermoplasmatales. For anaerobic fungi, HG triggered a considerable rise in Feramyces observed with both ITS markers, while a decline of Tahromyces was detected by ITS2 and decrease of Joblinomyces by ITS1 only. The uncultured BlackRhino group revealed by ITS1 and further elucidated in one sample by LSU analysis, formed a considerable part of the AF community of goats fed both diets. Results strongly indicate that the rumen ecosystem still acts as a source for novel microorganisms and unexplored microbial interactions and that initial rumen microbiota of the host animal considerably influences the reaction pattern upon diet change.Fil: Fliegerova, Katerina O.. Czech Academy of Sciences; República ChecaFil: Podmirseg, Sabine M.. Universidad de Innsbruck; AustriaFil: Vinzelj, Julia. Universidad de Innsbruck; AustriaFil: Grilli, Diego Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Cs.médicas. Departamento de Patología. Area de Microbiología; ArgentinaFil: Kvasnová, Simona. Czech Academy of Sciences; República ChecaFil: Schierová, Dagmar. Czech Academy of Sciences; República ChecaFil: Sechovcová, Hana. Czech Academy of Sciences; República ChecaFil: Mrázek, Jakub. Czech Academy of Sciences; República ChecaFil: Siddi, Giuliana. Università degli Studi di Sassari; ItaliaFil: Arenas, Graciela Nora. Universidad Nacional de Cuyo. Facultad de Cs.médicas. Departamento de Patología. Area de Microbiología; ArgentinaFil: Moniello, Giuseppe. Università degli Studi di Sassari; Itali

    Anaerobic fungal communities differ along the horse digestive tract

    Get PDF
    Anaerobic fungi are potent fibre degrading microbes in the equine hindgut, yet our understanding of their diversity and community structure is limited to date. In this preliminary work, using a clone library approach we studied the diversity of anaerobic fungi along six segments of the horse hindgut: caecum, right ventral colon (RVC), left ventral colon (LVC), left dorsal colon (LDC), right dorsal colon (RDC) and rectum. Of the 647 ITS1 clones, 61.7 % were assigned to genus level groups that are so far without any cultured representatives, and 38.0 % were assigned to the cultivated genera Neocallimastix (35.1 %), Orpinomyces (2.3 %), and Anaeromyces (0.6 %). AL1 dominated the group of uncultured anaerobic fungi, particularly in the RVC (88 %) and LDC (97 %). Sequences from the LSU clone library analysis of the LDC, however, split into two distinct phylogenetic clusters with low sequence identity to Caecomyces sp. (94–96 %) and Liebetanzomyces sp. (92 %) respectively. Sequences belonging to cultured Neocallimastix spp. dominated in LVC (81 %) and rectum (75.5 %). Quantification of anaerobic fungi showed significantly higher concentrations in RVC and RDC compared to other segments, which influenced the interpretation of the changes in anaerobic fungal diversity along the horse hindgut. These preliminary findings require further investigation.</p

    Characterization of the rumen bacterial population of Criollas goats under different feeding conditions, using a variety of molecular techniques

    Get PDF
    Los recientes avances en técnicas de biología molecular permiten el análisis de bacterias anaerobias estrictas sin la necesidad de cultivarlas, identificando de esta manera muchas bacterias funcionales como nuevos objetivos de estudio. Nuestro equipo de investigación logró aislar y caracterizar a la especie bacteriana hemicelulolítica Pseudobutyrivibrio xylanivorans, a partir del rumen de cabras Criollas, proponiendo el uso de esta cepa como probiótico. Previamente a la introducción de bacterias probióticas es necesario conocer la diversidad y abundancia de las especies microbianas predominantes para poder prever la intensidad de los cambios generados por la introducción de la bacteria probiótica

    PCR and Omics Based Techniques to Study the Diversity, Ecology and Biology of Anaerobic Fungi:Insights, Challenges, and Opportunities

    Get PDF
    Anaerobic fungi (phylum Neocallimastigomycota) are common inhabitants of the digestive tract of mammalian herbivores, and in the rumen, can account for up to 20% of the microbial biomass. Anaerobic fungi play a primary role in the degradation of lignocellulosic plant material. They also have a syntrophic interaction with methanogenic archaea, which increases their fiber degradation activity. To date, nine anaerobic fungal genera have been described, with further novel taxonomic groupings known to exist based on culture-independent molecular surveys. However, the true extent of their diversity may be even more extensively underestimated as anaerobic fungi continue being discovered in yet unexplored gut and non-gut environments. Additionally many studies are now known to have used primers that provide incomplete coverage of the Neocallimastigomycota. For ecological studies the internal transcribed spacer 1 region (ITS1) has been the taxonomic marker of choice, but due to various limitations the large subunit rRNA (LSU) is now being increasingly used. How the continued expansion of our knowledge regarding anaerobic fungal diversity will impact on our understanding of their biology and ecological role remains unclear; particularly as it is becoming apparent that anaerobic fungi display niche differentiation. As a consequence, there is a need to move beyond the broad generalization of anaerobic fungi as fiber-degraders, and explore the fundamental differences that underpin their ability to exist in distinct ecological niches. Application of genomics, transcriptomics, proteomics and metabolomics to their study in pure/mixed cultures and environmental samples will be invaluable in this process. To date the genomes and transcriptomes of several characterized anaerobic fungal isolates have been successfully generated. In contrast, the application of proteomics and metabolomics to anaerobic fungal analysis is still in its infancy. A central problem for all analyses, however, is the limited functional annotation of anaerobic fungal sequence data. There is therefore an urgent need to expand information held within publicly available reference databases. Once this challenge is overcome, along with improved sample collection and extraction, the application of these techniques will be key in furthering our understanding of the ecological role and impact of anaerobic fungi in the wide range of environments they inhabit

    Finding needles in haystacks:Linking scientific names, reference specimens and molecular data for Fungi

    Get PDF
    DNA phylogenetic comparisons have shown that morphology-based species recognition often underestimates fungal diversity. Therefore, the need for accurate DNA sequence data, tied to both correct taxonomic names and clearly annotated specimen data, has never been greater. Furthermore, the growing number of molecular ecology and microbiome projects using high-throughput sequencing require fast and effective methods for en masse species assignments. In this article, we focus on selecting and re-annotating a set of marker reference sequences that represent each currently accepted order of Fungi. The particular focus is on sequences from the internal transcribed spacer region in the nuclear ribosomal cistron, derived from type specimens and/or ex-type cultures. Reannotated and verified sequences were deposited in a curated public database at the National Center for Biotechnology Information (NCBI), namely the RefSeq Targeted Loci (RTL) database, and will be visible during routine sequence similarity searches with NR_prefixed accession numbers. A set of standards and protocols is proposed to improve the data quality of new sequences, and we suggest how type and other reference sequences can be used to improve identification of Fungi.The Intramural Research Programs of the National Center for Biotechnology Information, National Library of Medicine and the National Human Genome Research Institute, both at the National Institutes of Health.http://www.ncbi.nlm.nih.gov/bioproject/PRJNA177353am201

    Finding needles in haystacks : linking scientific names, reference specimens and molecular data for Fungi

    Get PDF
    DNA phylogenetic comparisons have shown that morphology-based species recognition often underestimates fungal diversity. Therefore, the need for accurate DNA sequence data, tied to both correct taxonomic names and clearly annotated specimen data, has never been greater. Furthermore, the growing number of molecular ecology and microbiome projects using high-throughput sequencing require fast and effective methods for en masse species assignments. In this article, we focus on selecting and re-annotating a set of marker reference sequences that represent each currently accepted order of Fungi. The particular focus is on sequences from the internal transcribed spacer region in the nuclear ribosomal cistron, derived from type specimens and/or ex-type cultures. Reannotated and verified sequences were deposited in a curated public database at the National Center for Biotechnology Information (NCBI), namely the RefSeq Targeted Loci (RTL) database, and will be visible during routine sequence similarity searches with NR_prefixed accession numbers. A set of standards and protocols is proposed to improve the data quality of new sequences, and we suggest how type and other reference sequences can be used to improve identification of Fungi.The Intramural Research Programs of the National Center for Biotechnology Information, National Library of Medicine and the National Human Genome Research Institute, both at the National Institutes of Health.http://www.ncbi.nlm.nih.gov/bioproject/PRJNA177353am201

    Anaerobic Fungi: Past, Present, and Future

    Get PDF
    Anaerobic fungi (AF) play an essential role in feed conversion due to their potent fiber degrading enzymes and invasive growth. Much has been learned about this unusual fungal phylum since the paradigm shifting work of Colin Orpin in the 1970s, when he characterized the first AF. Molecular approaches targeting specific phylogenetic marker genes have facilitated taxonomic classification of AF, which had been previously been complicated by the complex life cycles and associated morphologies. Although we now have a much better understanding of their diversity, it is believed that there are still numerous genera of AF that remain to be described in gut ecosystems. Recent marker-gene based studies have shown that fungal diversity in the herbivore gut is much like the bacterial population, driven by host phylogeny, host genetics and diet. Since AF are major contributors to the degradation of plant material ingested by the host animal, it is understandable that there has been great interest in exploring the enzymatic repertoire of these microorganisms in order to establish a better understanding of how AF, and their enzymes, can be used to improve host health and performance, while simultaneously reducing the ecological footprint of the livestock industry. A detailed understanding of AF and their interaction with other gut microbes as well as the host animal is essential, especially when production of affordable high-quality protein and other animal-based products needs to meet the demands of an increasing human population. Such a mechanistic understanding, leading to more sustainable livestock practices, will be possible with recently developed -omics technologies that have already provided first insights into the different contributions of the fungal and bacterial population in the rumen during plant cell wall hydrolysis.publishedVersio
    corecore