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Abstract: This work investigated the changes of the rumen microbiome of goats switched from
a forage to a concentrate diet with special attention to anaerobic fungi (AF). Female goats were
fed an alfalfa hay (AH) diet (0% grain; n = 4) for 20 days and were then abruptly shifted to a high-
grain (HG) diet (40% corn grain, 60% AH; n = 4) and treated for another 10 days. Rumen content
samples were collected from the cannulated animals at the end of each diet period (day 20 and 30).
The microbiome structure was studied using high-throughput sequencing for bacteria, archaea (16S
rRNA gene) and fungi (ITS2), accompanied by qPCR for each group. To further elucidate unclassified
AF, clone library analyses were performed on the ITS1 spacer region. Rumen pH was significantly
lower in HG diet fed goats, but did not induce subacute ruminal acidosis. HG diet altered prokaryotic
communities, with a significant increase of Bacteroidetes and a decrease of Firmicutes. On the genus
level Prevotella 1 was significantly boosted. Methanobrevibacter and Methanosphaera were the most
abundant archaea regardless of the diet and HG induced a significant augmentation of unclassified
Thermoplasmatales. For anaerobic fungi, HG triggered a considerable rise in Feramyces observed with
both ITS markers, while a decline of Tahromyces was detected by ITS2 and decrease of Joblinomyces
by ITS1 only. The uncultured BlackRhino group revealed by ITS1 and further elucidated in one
sample by LSU analysis, formed a considerable part of the AF community of goats fed both diets.
Results strongly indicate that the rumen ecosystem still acts as a source for novel microorganisms and
unexplored microbial interactions and that initial rumen microbiota of the host animal considerably
influences the reaction pattern upon diet change.

Keywords: Neocallimastigomycota; ITS1; ITS2; LSU; high-throughput sequencing; clone library;
diet switch

1. Introduction

The worldwide number of goats (Capra aegagrus f. hircus) is constantly increasing,
together with the role of this livestock in food production [1]. According to American Goat
Federation (americangoatfederation.org) there are approximately 450 million goats around
the whole world. In some regions, especially the arid zones, goats are outnumbering
cattle and are frequently more numerous than sheep, thus having a strong influence on
the socio-economic life of human populations. The increase in demand for milk and meat
production has induced intensive production systems, where goats are often fed relatively
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high-grain (HG) diets to achieve the maximum performance. This feeding pattern is able
to saturate energy and protein requirements of the animal for maintenance and growth,
but on the other hand is known to induce changes in the rumen microbiota [2–5] and often
causes metabolic disorders [6–8].

The effect of HG diets on the health and diversity of the rumen microbiome of goats
has received considerable attention in the past decade. Concentrate-rich diets induce an in-
crease of the lactic acid and/or butyrate production/accumulation [9–11] and a decrease
of the rumen pH that in turn results in higher proportion of Firmicutes [11–13]. At the
genus level the reduction of Fibrobacter [14,15] and fibrolytic bacteria sensitive to low pH [9]
has been described, while the genera Lactobacillus, Enterococcus, and Succiniclasticum were
increased in goats fed a HG diet [10,11,14]. On the other hand, the abundance of some
species, especially Prevotella, but also Butyrivibrio, is highly variable, giving inconsistent
results [10,12,14,16–18], indicating the genetic diversity, diet specificity, and functional
diversity of some rumen microbial groups [11].

All these studies show considerable influence of HG diet on the bacterial population,
while information on eukaryotic members of the goat rumen ecosystem is very scarce.
Metzler-Zebeli et al. [14] microscopically evaluated ciliate protozoa in the rumen fluid of
goats fed different proportion of barley grain (0%, 30%, and 60%) showing that the in-
creasing dietary grain level linearly increased the number of entodiniomorphids, whereas
that of holotrich ciliates did not change. Similarly, Liu et al. [10] observed a higher pro-
tozoa number with the increase of grain (50–80%) in goat diets. However, at the onset
of sub-acute ruminal acidosis (SARA), the protozoan population declined dramatically.
Although it is known that anaerobic fungi (AF) (phylum Neocallimastigomycota, class Neo-
callimastigomycetes, order Neocallimastigales, family Neocallimastigaceae [19]), represent
a major monophyletic group of symbiotic microorganisms, occupying the forestomach
of ruminants and the hindgut of nonruminant herbivores, their diversity in relation to
the animals’ diet in goats has remained unexplored. Together with bacteria and proto-
zoa, AF contribute to the hydrolysis of dietary fibers resulting in the production of end
fermentation products (volatile fatty acids), which are utilized by the host animals as
nutrient source [20]. An impressive array of enzymes necessary for plant cell-wall degra-
dation enables AF to break down plant cell walls, access fermentable substrates, degrade
and weaken plant tissue, and reduce the size of the dietary particles [21–23]. Moreover,
the fungal rhizoidal systems, which can be highly branched and invasive, are able to
penetrate deeply into the plant stems and can aid to mechanically decompose the plant
substrates [24]. Due to the capability of AF to colonize the sturdy plant structures and
recalcitrant components, such as the sclerenchym and vascular system, it can be expected
that Neocallimastigomycota play an especially important role in goats, which are used to
live in harsh arid environments and are consuming low-quality feed rich in fiber, lignin,
and tannins [25,26].

Although the diversity of goat rumen fungi has not been comprehensively studied,
the recently described genus Liebetanzomyces [27] and the latest described genera Agrio-
somyces, Capellomyces, and Joblinomyces [28] were isolated from the feces of goats, pointing
at a yet untapped source of novel fungal species associated with this host animal. The num-
ber of cultured AF has been enlarged up to 19 genera including as of yet Neocallimastix,
Piromyces, Orpinomyces, Anaeromyces, Caecomyces, Cyllamyces, Buwchfawromyces, Oontomyces,
Liebetanzomyces, Pecoramyces, Feramyces, Ghazallomyces, Aklioshbomyces, Agriosomyces,
Capellomyces, Joblinomyces, Khoyollomyces, Tahromyces, and Aestipascuomyces, the last ten
of which were described only very recently [28–31]. Among these known genera, the
species of Piromyces spiralis [32], Neocallimastix californiae [33], Anaeromyces contortus [34],
and the novel species of Agriosomyces longus, Capellomyces foraminis, Capellomyces elongates,
and Joblinomyces apicalis [28] have been isolated from the rumen fluid and feces of domesti-
cated and/or wild goats.

Further literature on goat AF is quite limited, involving the measurement of the hy-
drolytic activities of Neocallimastix sp. from rumen of native Indian and Korean goats [35–37]
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and the isolation of AF and associated methanogens of Neocallimastix frontalis, and
Caecomyces communis strains from feces of the Alpine ibex (Capra ibex) [38]. However,
a pyrosequencing study by Liggenstoffer et al. [39], did not detect any sequences of Neocalli-
mastix and Caecomyces in the feces of domesticated goat, but determined Anaeromyces (48%),
Piromyces (33%) and an uncultured group AL5 (20%) as prevalent genera. The cultured
representative of the group AL5 was isolated recently from the feces of the domesticated
goat and sheep and described as Joblinomyces [28,40]. A study by Kok et al. [41] evaluated
the ability of goat rumen fungal populations to adapt to the dietary high concentrations of
condensed tannins by real-time PCR. Finally, the sequences of xylan degrading enzymes of
GH family 11 related to xylanases from Neocallimastix and Orpinomyces were detected in
the rumen fluid of grazing goats [42].

To the best of our knowledge, there is no report on the influence of high grain diet
compared to high-fiber diet on the diversity and abundance of the prokaryotic, and also
the anaerobic fungal rumen microbiome of goat. A higher proportion of concentrate is
one of the feeding management strategies used in intensive caprine production systems,
however rational use of grain as the main energy resource has to be consistent not only
with productivity but also with animal health. This study was, therefore, undertaken
to evaluate both feeding regimes and their effect on the bacterial, archaeal, and fungal
population in rumen fluid of fistulated goats. In addition, the role of a host-animal-specific
AF population was evaluated. A culture-independent, high-throughput sequencing (HTS)
approach together with qPCR analyses were chosen to analyse these microbial groups
within rumen fluid of Creole goats during an alfalfa hay (AH) and high grain (HG) feeding
phase. Furthermore, AF diversity was more deeply investigated by clone libraries targeting
the ITS1 gene sequences.

2. Materials and Methods
2.1. Animals and Diet

This study was conducted at the Scientific and Technologic Center located in Mendoza
City, Argentina. The experiment was permitted by The Committee for the Care and Use
of Animals in Research of the University of Juan Agustín Maza, Mendoza, Argentina
(Approval No. 102/2013) and performed in accordance with the Guide for Care and Use of
Agricultural Animals in Research and Teaching of the Federal Animal Science Society [43].
Four Creole goats (meat breed, 5-year-old, BW: 40 ± 5 kg, never having an offspring)
fitted with a rumen fistula were used in this study. The animals housed in pens were
fed on the AH diet for a period of 20 days and were then abruptly shifted to a mixed
HG diet consisting of 60% alfalfa hay and 40% corn grain for another 10 days. The diets,
formulated to meet the animals’ nutrient requirements, as defined by the National Research
Council [44], were composed of 1.96 or 2.33 Mcal of metabolizable energy (ME) kg−1 of dry
matter with forage-to-concentrate ratios of 100:0 (AH diet) and 60:40 (HG diet), respectively.
The goats were fed simultaneously once daily in the morning, had free access to water,
and had not been co-housed with any other animals.

2.2. Nutritional Composition of AH and HG Diets

Samples of alfalfa hay (Medicago sativa) and corn grains were dried at 70 ◦C for
72 h, reduced to a particle size of less than 1 mm, and subjected to chemical analyses
(Table 1): dry matter (DM), crude protein (CP), starch content, neutral detergent fiber
(NDF), acid detergent fiber (ADF) [45]; acid detergent lignin (ADL) [46]; hemicellulose [47];
and cellulose [48]. Additionally, the ME content was estimated according to Aguilera [49].
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Table 1. Total daily intake and daily intake of food, nutrients and metabolizable energy (ME) of
Creole goats included in the experimental period. Mean values ± SD.

Diets

Alfalfa Hay High Grain

Total daily intake (g DM) 1061 ± 173 a 1252 ± 193 a

Daily food intake (g DM):
Alfalfa Hay 1061 ± 173 a 900 ± 193 a

Corn - 352
Nutrient intake (g DM):

CP 168 ± 27 a 171 ± 30 a

NDF 361 ± 59 a 335 ± 65 a

ADF 228 ± 37 a 204 ± 41 a

ADL 42 ± 7 a 39 ± 7 a

Hemicellulose 133 ± 22 a 132 ± 24 a

Cellulose 183 ± 30 a 163 ± 33 a

Starch 27 ± 4 a 244 ± 5 b

Daily intake of ME (MCal kg DM−1) 2.08 ± 0.34 a 2.78 ± 0.38 b

a,b Values in the same row with different superscripts differ at p < 0.05. DM, dry matter; CP, crude protein;
NDF, neutral detergent fiber; ADF, acid detergent fiber; ADL, acid detergent lignin.

2.3. Sample Collection and DNA Extraction

The rumen content (200 mL) was collected 5 h after feeding at the end of the AH diet
period (day 20) and ten days after the change of the diet to HG (day 30). Simultaneously,
the ruminal pH was measured with a glass electrode and clinical criteria for acute or
subacute ruminal acidosis, such as decreased intake, weakness, and abdominal pain
were used to evaluate the impact of the abrupt change of the diet on the animal health.
A representative aliquot of each sample was freeze-dried and shipped to the Institute of
Animal Physiology and Genetics, Czech Academy of Sciences (Prague, Czech Republic)
for the DNA isolation and subsequent analyses. The genomic DNA was extracted using
the method of Yu and Morrison [50]. The concentration and purity of the extracted nucleic
acids were checked using a NanoDrop 2000c UV-Vis spectrophotometer (Thermo Scientific,
Waltham, MA, USA). DNA extracts were stored at −20 ◦C until use.

2.4. Characterization of Goat Rumen Microbiome by High-Throughput Sequencing

The DNA extracts were subjected to an amplicon sequencing approach using the
Illumina MiSeq chemistry v3 (300 bp paired-end) and targeting specific marker genes of
the archaeal, bacterial and fungal population within the rumen liquid under AH and HG
diet (n = 4). The sequencing was performed by Microsynth AG (Balgach, Switzerland)
using the following primers: 515f (GTGCCAGCMGCCGCGGTAA) and 806r (GGAC-
TACHVGGGTWTCTAA) targeting the V4 region of the archaeal and bacterial 16S rRNA
gene [51] and ITS3 (GCATCGATGAAGAACGCAGC) and ITS4 (TCCTCCGCTTATTGATA
TGC) targeting the eukaryotic ITS2 region [52]. Both PCR steps (first stage of library prepa-
ration and barcoding) were performed with the KAPA Hifi Hotstart polymerase system.
The conditions for the library generation for both V4 and ITS2 were: initial denaturation at
95 ◦C for 3 min, followed by 30 cycles (V4) or 35 cycles (ITS2) of denaturation at 98 ◦C for
20 s, annealing at 56 ◦C for 30 s and elongation at 72 ◦C for 30 s. The runs were completed
with a final elongation step at 72 ◦C for 5 min. Both libraries were generated in separate
reaction tubes and equimolarly pooled for subsequent barcoding.

The CoMA pipeline [53] was used for the data processing of obtained raw V4 reads.
In brief, paired-end reads were merged, barcodes and primers trimmed and sequences
with an average quality score of ≥25 and a median length of 253 bp of the 16S rRNA gene
(V4) were kept for further analyses. For archaea and bacteria, the alignment and taxonomic
affiliation of sequences were undertaken at a 97% similarity level using the blast algorithm
and the SILVA SSU (release 128) and Greengenes (release 13_5) as primary and backup
databases, respectively. Datasets were subsampled according to the sample with the lowest
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read number, singletons and doubletons removed and only OTUs (operational taxonomic
units) retained that could be detected in at least two samples. For a general overview at
phylum or genus-level, only OTUs with a minimum abundance of ≥1% are shown.

For analysis of the fungal community, an amplicon sequence variance (ASV)-based
strategy was chosen over an OTU-based one since ASVs are more suitable to recover
fungal community composition [54]. Fungal sequences (ITS2) were analyzed using the
DADA2 algorithm [55], basically following the DADA2 ITS Pipeline Workflow (1.8) avail-
able on the official DADA2 homepage. In short, primers have been removed from the
demultiplexed reads using cutadapt [56], then N-filtering and trimming has been done
using the filterAndTrim function of the DADA2 package with the following parameters
enforced: maxN = 0, maxEE = c(2,2), truncQ = 2, truncLen = c(245,200), rm.phix = TRUE,
compress = TRUE). For taxonomic assignment the assignTaxonomy tool of DADA2 and
the UNITE database v. 04.02.2020 [57] enriched with the ITS2 sequences of the novel AF
genera [28] was used. Further analysis was done in R, mostly following the example
workflow for DADA2 downstream analysis posted by Happy Belly Bioinformatics [58].
For better visualization of the diversity patterns, all ASVs that were not present at least
three times in at least two samples were discarded. Changes in community composition
at phylum and, if applicable, down to species level were normalized and analyzed using
unfiltered ASV count data with DESeq2 [59] adapted for microbial count data [60].

SRA files of the 16S rRNA (V4) and ITS2 HTS approach were deposited to the NCBI
database under BioProject PRJNA602992 and BioSamples SAMN13915736-SAMN13915751
with their respective SRA numbers SRR10961333-SRR10961348.

2.5. Characterization of Anaerobic Fungi Population Using Clone Libraries

The amplification of the anaerobic fungal ITS1 region from each sample was car-
ried out with the combination of the fungal universal ITS1 forward primer (CTTGGT-
CATTTAGAGGAAGTA) [61] and the Neocallimastigomycetes-specific 5.8S rRNA gene
reverse primer (GTGCAATATGCGTTCGAAGATT) [62] as described previously by Mura
et al. [63]. The PCR reaction (50 µL) was performed with a PPP Master Mix kit (Top-
Bio, Vestec, Czech Republic) and 0.3 µM of each primer using the following thermal
cycling conditions: 33 cycles of denaturation at 94 ◦C for 1 min, annealing at 58 ◦C for
30 s and extension at 72 ◦C for 45 s with an initial cycle of 94 ◦C for 4 min and final
cycle of 72 ◦C for 2 min. Each sample was PCR amplified in quadruplicate, pooled,
and verified by agarose gel electrophoresis. The pooled PCR amplicons of the correct
length (approximately 350 bp) were excised from an agarose gel with a sterile scalpel
blade, purified, and concentrated using a QIAquick Gel Extraction Kit (Qiagen, Hilden,
Germany). For sample G3AH the ribosomal large subunit 28S rRNA (LSU) was also
amplified in quadruplicate using Neocallimastigomycetes-specific primer set GGNL1F (5′-
CATAGAGGGTGAGAATCCCGTA-3′) and GGNL4R (5′-TCAACATCCTAAGCGTAGGTA-
3′) as described previously by Nagler et al. [64]. The rationale for this analysis is explained
in the results section.

The TOPO® TA Cloning® Kit for Sequencing (Life Technologies, USA) was used
for the preparation of the ITS1 (and, for sample G3AH, LSU) clone libraries for each
sample as described by Mura et al. [63]. Plasmid DNA was isolated from 413 randomly
selected ITS1 clones (in average 51 clones per library) and 35 LSU clones of E. coli using
a GenElute™ HP Plasmid Miniprep Kit (Sigma-Aldrich, St. Louis, MI, USA) and sent for
Sanger sequencing using the M13F priming sites within the vector pCR4 (SEQme, Dobris,
Czech Republic). The quality of reads was manually verified, the vector contamination was
removed and chimeras were identified by examining the multiple sequence alignment using
bioinformatics software Geneious 10.3.1. (https://www.geneious.com). Unambiguous
sequence data were processed in QIIME version 1.8 [65] by BLAST against ITS1 reference
database of AF [66] updated with sequences of novel species. The 413 cloned sequences
with taxonomic assignment from the eight libraries were concatenated into a single fasta
file, and a sequence map (seqs_otus.txt) was manually built for input into the script

https://www.geneious.com
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“make_otu_table.py”. The resulting relative abundance table was summarized at the clade
level. The analysis of LSU sequence data was carried out using BLAST against GenBank
database. The ITS1 nucleotide sequences generated from rumen samples of goats by
clone library approach have been deposited to the NCBI database under the following
accession numbers: MH038788—MH039011 (AH diet) and MH039012—MH039235 (HG
diet). The LSU sequences of the sample G3AH have been deposited to the NCBI database
under the accession numbers MW364027—MW364061.

2.6. qPCR Analysis

The quantification of ITS1 gene copy numbers was performed using the MX 3005P
QPCR System (Stratagene) and EliZyme Green MIX AddROX (Elizabeth Pharmacon).
The same ITS1 primer pair and cycling conditions as described above for clone library
preparation were used. The melting curve analysis with an interval from 58 to 95 ◦C
was conducted to verify the amplification specificity. The standard curve (slope −3.258,
correlation coefficient (R2) 0.991) was prepared from a 10-fold dilution series of a pCR4-
TOPO plasmid containing the ITS1 region of Anaeromyces mucronatus BF2 (NCBI Accession
No. MK418978). The quantitation was linear over seven orders of magnitude (102 to
108 gene copies µL−1). All samples and negative controls without a DNA template were
analyzed in three replicates. Total bacteria and total archaea were quantified on a Rotor-
Gene Q real-time cycler using the SensiFast SYBR® Hi-Rox chemistry (Bioline, London,
UK). Freshly prepared ten-fold dilutions (107 to 102) of Nitrosomonas europea (DSMZ 21879)
and Methanobrevibacter formicium (DSMZ 1535) stock DNA served as reference together
with 1:10 dilutions of sample extracts, all analyzed in technical duplicates. For archaea
the primer pair Parch519f/Arch915r [67,68] at a final concentration of 400 nM and for
bacteria 515f/806r [51] at a concentration of 250 nM were used. Cycling consisted of 95 ◦C
for 10 min, followed by 40 cycles of 95 ◦C for 20 s, 57 ◦C or 50◦C for 20 s (archaea or
bacteria, respectively), and 72 ◦C for 30 s each. A final melt curve (65 to 90 ◦C) with an
increment of 0.25 ◦C was added after each run. R2-values of standard curves were above
0.999. The calculation of 16S rRNA copy numbers was performed with the Rotor-Gene
Series Software (2.3.1) and for all investigated groups copy numbers were calculated per g
of fresh matter (FM) rumen sample.

2.7. Statistical Analysis

The differences between the two diets were tested for significance using a paired
t-test. In case of violation of normal distribution (Shapiro–Wilk test), the Wilcoxon singed
rank test was used instead. Pearson correlation analysis was used to evaluate the (inter)
dependencies of species data or correlation with surveyed diet characteristics. Significant
differences were declared at the p < 0.05 level. Pearson correlation analyses and their
visualizations were done in R using the packages corrplot, and lares. A quantitative
profile of bacteria, archaea, and anaerobic fungi was calculated for each sample, using the
product of obtained gene copy numbers and relative abundance of each clade as given by
high-throughput sequencing.

3. Results
3.1. Influence of Diet on Ruminal pH

The corn grain supplementation significantly increased the starch content (p < 0.05)
in HG diet (Table 1), which induced acidification of the rumen environment. The pH of
the rumen fluids of HG-fed goats (6.49 ± 0.10) was significantly lower (p < 0.05) compared
to AH-fed goats (6.82 ± 0.12). However, ruminal pH values of animals fed the HG diet
still ranged in physiological levels. None of the goats showed any clinical or sub-clinical
signs of acidosis indicating that the abrupt transition of animals from AH to HG diet did
not cause either acute or subacute ruminal acidosis.
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3.2. High-Throughput Sequencing of the 16S rRNA Gene V4 Region and the ITS2 Region

For V4 amplicons, a total of 34,939 reads for all eight goat rumen samples passed
quality filtering of the original 71,533 reads obtained by high-throughput sequencing
(HTS). While the average number of reads per sample was 4367 ± 1800, subsampling was
performed at 1646 reads per sample. Based on the rarefaction curves, this allowed for
a satisfactory sequencing depth (Supplementary Figure S1) to determine the core micro-
biome. Analysis of the V4 region revealed a bacterial and archaeal sequence distribution
of 96.3 to 3.7%. Altogether 605 and 8 OTUs were detected for bacteria and archaea, re-
spectively. OTUs that were not present at least three times in at least two samples were
discarded. The OTU abundance was evenly distributed amongst all samples in the V4
dataset (273 ± 22) and the Shannon index (average 6.81 ± 0.2) indicated that all samples
showed equally high diversity (Supplementary Figure S2).

After filtering, denoizing, merging, and chimera removal within the DADA2 pipeline,
322,326 ITS2 reads (60.8% of input reads) remained for taxonomic assignment. Then, 350 ASVs
were identified, of which 132 ASVs remained after filtering of low abundance groups.
On average across all samples, most of the filtered reads were assigned to Neocalli-
mastigomycota (67.78 ± 3.53%), followed by Ascomycota (19.64 ± 2.15%), Basidiomycota
(8.17 ± 0.98%), unidentified Fungi (4.40 ± 0.33%), and Mucoromycota (0.01 ± 0.00%).

3.2.1. Bacterial Community Composition

The bulk bacterial community consisted of the phyla Bacteroidetes (43.4 ± 7.24%
AH; 55.7 ± 6.94% HG) and Firmicutes (43.8 ± 8.74% AH; 33.7 ± 6.09% HG) and some
minor populations of Synergistetes, Spirochaetae, Chloroflexi, Tenericutes, Fibrobacteres,
Saccharibacteria, and Verrucomicrobia in descending order (Figure 1a). All these groups
except for Bacteroidetes and Spirochaetae were decreasing in relative abundance following
the diet switch of AH to HG and the relative increase of the key group of Bacteroidetes
was significant. At genus level a significant increase of Prevotella 1 could be observed
(Supplementary Table S1). Other major genera found were Prevotella, members of the
Rikenellaceae RG9 gut cluster, an uncultured rumen bacterium cluster, Christensenellaceae
R-7, Butyrivibrio and Succiniclasticum to name only a few. Looking at the bacterial abundance
a slight overall decrease of 16S rRNA copies from 2.08× 1010 ± 5.36× 109 (AH) to 1.8× 1010

± 9.29 × 109 (HG) was observed after diet change (Figure 1b). However, this went along
with very individual responses of the bacterial abundance in each goat (Supplementary
Table S2).
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3.2.2. Archaeal Community Composition

After 20 days of AH diet, the archaeal rumen population was basically composed
of Methanobrevibacter (two different OTUs; 69.3 ± 5.86%), Methanosphaera (18.9 ± 10.3%)
and a yet unclassified Thermoplasmatales archaeon (Figure 2; Supplementary Table S1).
Only in two animals (G1AH, G2AH) Candidatus Methanomethylophilus could be detected.
All these genera were distributed at varying abundance, whereas G1AH and G2AH seemed
to have a more similar archaeal rumen microbiome (Figure 2a). Following the diet switch
to HG, a disappearance of Candidatus Methanomethylophilus was observed in the two latter
mentioned animals, this genus emerged, however, at little abundance (3.3%) in G4HG
(Figure 2a). There was no significant change in relative abundance for the two genera
Methanobrevibacter and Methanosphaera upon diet change, however, it induced a significant
increase in the unclassified Thermoplasmatales group from 10.6 ± 11% to 23.1 ± 8.11%
(p < 0.01). Regarding archaeal abundance, a slight increase of 16S rRNA copies from
4.66 × 108 ± 2.1 × 108 (AH) to 4.93 × 108 ± 2.84 × 108 (HG) was observed after diet
change. Archaeal rumen population rose in three goats and decreased in one animal
(Figure 2b, Supplementary Table S2).
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3.2.3. Fungal Community Composition

The fungal rumen microbiome after 20 days of AH diet was comprised to the largest
extent of Neocallimastigomycota (47.7 ± 18.0%), Ascomycota (34.1 ± 17.7%), and Basid-
iomycota (14.9 ± 8.8%) (Figure 3). The community composition shifted more towards
Neocallimastigomycota (88.3 ± 18.9%) after the change to HG diet. The increase in Neo-
callimastigomycota on HG diet was accompanied by a drop in Ascomycota (4.9 ± 3.4%),
and Basidiomycota (1.3 ± 0.8%). Under both diet regimes, a small community of un-
classified fungi could also be detected (3.3 ± 1.2% and 5.5 ± 3.7%, for AH and HG diet,
respectively). Additionally, under AH diet a minor population of Mucoromycota was
detected in two animals (Supplementary Table S1). While the individual community com-
position differed from animal to animal, the trend of community changes at phylum level
upon diet switch were the same for all animals. DESeq2 analysis identified the drop in
Ascomycota and Basidiomycota, as well as the increase in Neocallimastigomycota and
unclassified Fungi upon diet change to be significant (p < 0.05; Supplementary Figure S3).
It further identified 22 ASVs out of 350 ASVs to exhibit significant changes upon diet switch.
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Among Ascomycota, the genus of Aspergillus formed a major part of the community
in goats on AH diet (15% of filtered reads). However, the steep drop in relative abundance
upon diet switch (0.27% of filtered reads in goats on HG diet) was not identified as signifi-
cant by DESeq2 analysis. Instead, six other Ascomycota genera (e.g., Myrothecium, Lectera)
significantly dropped, and only two Ascomycota genera (Ascochyta, and Neosetophoma)
increased in relative abundance upon diet change.

3.3. Community Composition of Neocallimastigomycota Based on HTS of the ITS2

At the genus level, 12 ASVs across 4 genera of Neocallimastigomycota were identified
by the DADA2 algorithm; one additional ASV could not be identified beyond belonging to
Neocallimastigaceae. While individual differences between animals were less prominent
at phylum level, at genus/species level those differences became clearer. For example,
the Neocallimastigomycota community of goats G1 and G2 on AH diet mainly consisted
of Tahromyces, and Orpinomyces, while goat G3 was dominated by unclassified Neocalli-
mastigaceae and goat G4 was dominated by Feramyces (Figure 4c; Supplementary Table S1).
Generally, it seemed that the microbiome of goats G1 and G2 was fairly similar compared
to goats G3 and G4. The influence of the individual microbiome composition was es-
pecially obvious in the qPCR results: goats G1 and G2 reacted to the diet switch with
a decrease by the factor of ten for total Neocallimastigomycota counts (from 3.66 × 108

to 3.1 × 107), while in goats G3 and G4 the numbers trippled from 1.29 × 108 up to
4.13 × 108. The overall trend was a drop in Neocallimastigomycota numbers by 10.1%
upon diet change (Figure 4d). Furthermore, the increase of starch content in the diet led to
a Neocallimastigomycota community conversion across all goats (Figure 4c). There was
a significant increase in Feramyces (acc. DESeq2 analysis) after the diet switch. The rise in
Feramyces in goats G1 and G2 (from 0 to 69.4% and 54.3%, respectively) was accompanied
by a drop in Orpinomyces and Tahromyces and an increase in Piromyces and unclassified
Neocallimastigacaea. For goat G4, the further increase of Feramyces (from 46.7 to 66.8%) led
to a drop in all other identified genera (Figure 4c, Supplementary Table S1).

Broken down to ASV level, 7 ASVs assigned to Neocallimastigaceae showed significant
changes upon diet switch (Supplementary Figure S3). Interestingly, while all three ASVs
identified as Feramyces showed a significant increase, the other four ASVs (two Tahromyces
and two Piromyces) behaved inconsistently (one of each increased; the other decreased).
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3.4. Community Composition of Neocallimastigomycota Based on ITS1 Clone Libraries

The relatively high proportion of unclassified anaerobic fungi obtained by ITS2 se-
quencing, especially in the samples G3AH, G1HG, and G2HG, induced the further analysis
of AF diversity using ITS1 barcode marker via a clone library approach. All of the 413
screened ITS1 fragments from eight clone libraries were taxonomically assigned within
the phylum Neocallimastigomycota (Figure 4a). Overall, already cultured genera repre-
sented the 67.1% majority of sequences and were taxonomically assigned to Feramyces
(34.4%), Joblinomyces (31.5%), and Tahromyces (1.2%). A portion of 27.3% of sequences were
represented by genus-level groups called BlackRhino (23.2%) and Piromyces 4 (4.1%) (as
defined by Koetschan et al. by [66]) which are currently without cultured representatives.
A portion of 5.6% of sequences was assigned to JF423626, which is the accession number to
a cultured strain of Neocallimastix frontalis NZRold-05 [69] (Figure 4a). In the ITS1-sequence,
structure-based analysis of AF by Koetschan et al. [66]; however, this sequence clustered
into the genus Orpinomyces. Thus, in the ITS1 reference database this specific AF strain is
listed with the accession number only.

The shift from AH to HG diet promoted a change in relative abundances of fun-
gal taxa (Figure 4a, Supplementary Table S3). The mean results per treatment showed
that Joblinomyces was the dominant genus in AH-fed goats (44.9 ± 5.5%), followed by
the BlackRhino group (25.5 ± 18.7%), Feramyces (12 ± 19.5%), sp. JF463626 (9.3 ± 5.5%),
Piromyces 4 (6.6 ± 5.1%), and Tahromyces (1.7 ± 1.9%). The relative abundance of Feramyces
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quintupled in the HG-fed goats up to 61.1 ± 5.7%, while all the other fungal groups were
decreased, in particular Joblinomyces dropped by a factor of three (14.5 ± 8.5%) (Figure 4a,
Supplementary Table S3). The individual response of animals to the diet shift is evident,
especially when ITS1 qPCR data are considered (Figure 4b). Goats G1 and G2 with initially
no detectable sequences of Feramyces, but with high relative abundance of Joblinomyces
(Figure 4a), exhibited a suppression of AF concentration (Figure 4b), decreased abundance
of Joblinomyces and appearance of Feramyces under HG diet. In contrast, the HG diet in-
duced higher AF concentration in the goats G3 and G4 (Figure 4b), characterized mainly by
the enhancement of relative abundance of Feramyces (Figure 4a). The overall ruminal popu-
lation of Neocallimastigomycota reacted with a slight drop from 2.47 × 108 ± 1.38 × 108

(AH) to 2.22 × 108 ± 2.45 × 108 (HG) upon diet change (Figure 4b).

3.5. Community Composition of Neocallimastigomycota in Sample G3AH Based on LSU
Clone Library

In the rumen of goat G3 on AH diet the considerable 52.7% of the ITS1 sequences be-
longed to the monophyletic BlackRhino clade (Figure 4a). In order to get more information
about taxonomic position of this uncultured clade, this sample was also analyzed using
an LSU based clone library. Tree topology showed that the LSU sequences obtained (n = 35)
formed four distinct clusters (Figure 5). The clade of Piromyces sp. included two clusters.
Clones representing cluster I (n = 16) had the highest sequence identity (99.3–99.6%) to
a sequence of a cultured Piromyces sp. strain SFH682 (MK775335) isolated from sheep
feces. Clones of the sister cluster II (n = 3) had the highest sequence identity (99.5–99.8%)
to a cultured Piromyces sp. strain CN12 (KY368606) isolated from goat rumen. Fourteen
other clones had the highest sequence identity (98.3–99.8%) to Neocallimastix cf. cameroonii
strain G3 (MG992493) isolated from sheep feces. Only two clones clustered with Feramyces
sp. showing 99.5% sequence identity to Feramyces austinii strain F2a (MG605676) isolated
from Barbary sheep feces. Interestingly, NCBI BLAST searching of region of local similarity
between BlackRhino ITS1 (both sequences generated in this study and sequences from
reference ITS1 database) and cultured species resulted in high sequence identity (99.1%) of
332 long ITS1 spacer to Piromyces sp. strain SFH682 (MK775329), which is the same strain
identified here by LSU sequences analysis.
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Figure 5. Phylogenetic relationships of anaerobic fungal LSU gene sequences generated from the sample G3AH inferred
using the UPGMA method with bootstrap values from 1000 replications. The analysis involved a total of 45 nucleotide
sequences (35 sequences generated from the G3AH sample, 9 sequences of the cultured genera of anaerobic fungi (Piromyces
sp. MK775335, KY368606, and KY368602, N. camerooni NG060329, KR920745, and MG992493, F. austinii MG584215,
MG584217, and MG605676) plus 1 outgroup sequence. An uncompressed phylogenetic tree is shown in Supplementary
Material Figure S4.

3.6. Correlation Analyses

A total of 71 parameters (diet characteristics, HTS results for archaea, bacteria, to-
tal fungi and Neocallimastigomycota, and clone library results) were subjected to a corre-
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lation analysis. Out of the 317 pairs that showed significant correlation (p < 0.05) at high
levels (i.e., −0.8 > Pearson’s r > 0.8), the top parameters with the most connected partners
were: Fibrobacteres (18 connections), Treponema 2 (15), Verrucomicrobia (14), Basidiomycota
(13), Lachnospiraceae Genus 10 (13), Methanobrevibacter 1 (12), Lachnospira (11), and Ascomy-
cota (11). For more details please see the correlation table and related figures (Figure 6,
Supplementary Table S4). Here we focus on the strongest correlation pairs and interactions
of Neocallimastigomycota with other microbial groups or physico-chemical parameters.
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Out of the dietary metadata, only starch content showed correlations with the phyloge-
netic data. It positively correlated with Feramyces austinii (ITS1 clone library data; r +0.88),
Feramyces (ITS2 HTS data; r +0.86), and with the bacterial groups of Ruminococcaceae
NK4A214 (V4 HTS data; r +0.85) and Sphaerochaeta (V4 HTS data; r +0.96). Neocal-
limastigomycota, in general, negatively correlated with Ascomycota (r −0.99) and Ba-
sidiomycota (r −0.93). At higher phylogenetic resolution, however, Tahromyces (ITS2),
Orpinomyces (ITS2), Piromyces 4 (ITS1), and Joblinomyces apicalis (ITS1) showed a high pos-
itive correlation with Ascomycota. Within archaea, Methanobrevibacter 1 was negatively
correlated with Feramyces (both ITS1, and ITS2 data), but positively correlated to Tahromyces
(ITS1 and ITS2), Orpinomyces (ITS2), and Joblinomyces apicalis (ITS1). In general, there were
three different clusters of Neocallimastigomycota correlations: the first cluster was domi-
nated by Feramyces (ITS1 and ITS2 data) and positively correlated with high starch content,
the bacterial phylum of Bacteroidetes (V4 HTS data; r +0.72), and the archaeal group of
unclassified Thermoplasmatales (r +0.76). A second cluster with a more diverse community
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that consisted of Orpinomyces (ITS2), Joblinomyces (ITS1), Piromyces 4 (ITS1), and Tahromyces
(ITS1 and ITS2) and positively correlated with the bacterial phyla Fibrobacteres, and Ver-
rucomicrobia and with the archaeal genera of Methanosphaera and Methanobrevibacter 1.
Furthermore, the third cluster consisted of unclassified Neocallimastigomycota genera
(ITS2), Piromyces (ITS2), and BlackRhino (ITS1). This last cluster generally shared little con-
nections to the rest; only the BlackRhino group correlated positively with Methanosphaera
and the bacterial genus of Lachnospira NK3A20, and negatively with Rikenellaceae RC9
Gut Group and a cluster of uncultured rumen bacteria.

4. Discussion

The animals’ diet is the major determinant of ruminal microbial composition [70,71]
and it depends highly on the geographical location and the type of production system.
Creole goats in Argentina are mostly kept extensively with continuous grazing on range-
lands and little or no feed supplementation [72,73]. Economic aspects of meat and milk
production, however, necessitate alternative feeding systems and it is a common strategy to
add substantial portions of grains to diets to saturate the animals’ nutritional requirement.
It is well known that feeding excessive amounts of non-structural carbohydrates results in
subacute ruminal acidosis (SARA) [7]. The development of SARA seems to be dependent
on the ratio of forage and grain with no signs of this metabolic disorder in goats fed up
to 30% of barley grain [74]. In our study, 40% of corn grain in the diet has not induced
sub-clinical signs of acidosis, despite pH-values being significantly lower in HG fed goats.
However, in any of studied goats ruminal pH did not drop below 5.6, which is a value
established by Khafipour et al. [75] to consider a SARA in individual animals. A study by
Lee et al. [76] indicates, that goats can be more resistant to ruminal acidosis compared to
cattle. This could be related to some goat-specific evolutionary adaptations of the diges-
tive system such as large salivary glands, the large absorption area of rumen epithelium,
the ability to rapidly change the rumen volume in response to environmental alterations,
efficient recycling of urea, efficient use of water, and the ability to reduce their metabolism
rate [25].

The impact of diet changes on the microbiome of goats, however, still remains unclear.
The number of studies dealing with this topic has been increased recently [77,78], mainly
with emphasis on bacterial diversity, while the response of anaerobic fungi to dietary
treatment is less studied and in the goat model essentially unexplored.

4.1. Prokaryotic Response on Diet Shift

The HTS data of this study revealed the equal proportion of the two main bacterial
phyla Firmicutes and Bacteroidetes in AH fed goats, while the transition from feeding on
hay to corn-containing diet (40%) resulted in a significant increase of Bacteroidetes. This re-
sult is not consistent with previous reports describing that the high, readily fermented
carbohydrates in HG diets lead to a higher proportion of Firmicutes [11–13,18,79]. In fact,
in our study, Firmicutes even decreased by approximately 25% in relative abundance.
The content of grain in the mentioned studies was, however, at least 65%, which might
explain the detected differences. Interestingly, when comparing our results on the mature
rumen microbiome of goats with the study of Wang et al. [78], Bacteroidetes were in the
same range; however, Proteobacteria were clearly less abundant in our study (always below
1% compared to ≥10%). Firmicutes, in contrast, remained at higher levels in our study,
even after the abundance drop that accompanied the change to HG diet. These discrepan-
cies might be strongly influenced by the specific diet composition: the diet in the study of
Wang et al. [78] was composed of a more diverse mixture (alfalfa 34.8%, rice straw 35.2%,
corn 11.5%, soybean meal 5%, wheat bran 12%, salt, and mineral nutrients).

The methanogenic community composition revealed in this study corresponds well
with published data [80–82] showing Methanobrevibacter and Methanosphaera as the two
most prevalent genera in adult goats. The high incidence of Candidatus Methanomethy-
lophilus described by Wang et al. [81], however, could not be confirmed in our study, as we
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detected this species in low amounts in three of the tested animals only. Furthermore,
we report here for the first time a high abundance of an unclassified Thermoplasmatales
group (two OTUs) in goat rumen (especially in HG fed goats), indicating that the rumen
ecosystem still acts as a source for novel microorganisms and unexplored microbial in-
teractions. Indeed, correlation analyses on all investigated parameters revealed that this
group of unclassified Thermoplasmatales is positively connected with Feramyces (ITS1
and ITS2 data), and negatively connected to Ascomycota. Still, it remains unclear if this
indicates a direct interaction of Feramyces and the unclassified Thermoplasmatales group,
or if this co-increase under HG diet is triggered by other environmental conditions or
other microbial guilds. Generally, groups such as Methanobrevibacter sp., Methanobacterium
sp., and Methanosphaera have already been identified as the main methanogens associated
with anaerobic fungi [38,83,84]. Looking at the key prokaryotic genera, similar members
were detected for goats as described by Kumar et al. [83], mentioning Prevotella, Lach-
nospiraceae, Methanobrevibacter, and Methanosphaera amongst others in the rumen of dairy
cows. In addition to the before mentioned groups, Belanche and coworkers [85] further
detected Treponema and Ruminococcus, which were also present in our study. The study
dealt with the microbial response upon diet shift from concentrate to high-fiber diet in
sheep. However, the dominant AF in that study were Caecomyces sp. and Neocallimastix
frontalis, which were not detected in our survey. A major bacterial group in our study,
Prevotella, is a common rumen bacterium that exhibits a very versatile metabolism, able to
thrive on peptides, proteins, monosaccharides and plant polysaccharides [86] and thus is
often unaffected by diet changes. The increase with concentrate-rich diets, as determined
in our study, was also observed by others [15,70].

4.2. Fungal Response on Diet Shift

The diversity of total fungi observed in our work was comparable to a similar study
on Holstein heifers that dealt with the rumen microbiome under varying concentrate ratios
in feed [18]. This study determined Neocallimastigomycota and Ascomycota to be the
dominant fungal groups, but also detected a cluster of uncultured Fungi as well as a minor
population of Basidiomycota. In another multi-kingdom study investigating the sheep
rumen microbiome of grazing and non-grazing (concentrate added to the feed) animals,
researchers could assign up to 80% of total fungal reads to the phylum Neocallimastigomy-
cota [85]. In that study, as well as in our work, the phylum Neocallimastigomycota was
especially prevalent in goats on HG diet. However, another study on dairy cows showed
opposite trends [87]. Nevertheless, all three studies found Neocallimastigomycota to be
inversely related to Ascomycota. High abundance of Ascomycota described previously
in AH fed animals was associated with plant pathogens that can attack grass before the
harvest [88], as well as with contamination by Ascomycota mold (especially Aspergillus
and Fusarium) that can occur during storage processes [89]. In the present study, however,
the high abundance of Ascomycota cannot solely be explained by these phenomenons,
since the change in relative abundance of Aspergillus upon diet switch was not significant.
Whether other fungal groups, except for Neocallimastigomycota, truly play a role in the
fermentative rumen system beyond being ingested together with the feed, remains to
be elucidated.

For Neocallimastigomycota in particular, it is already well established that altering
the substrate availability through dietary modification affects their population structure
within the digestive tract. Denman et al. [90] reported a greater diversity of Neocalli-
mastigomycota in cattle fed high-fiber diets compared to those fed high grain-based diets
(70%). This trend was also found in dairy cows [83,91], steer [92], sheep [85], and now in
goats (this study). Interestingly, while Denman et al. [90] described the disappearing of
the genus Neocallimastix in grain-fed cattle, higher levels of Neocallimastix and Piromyces
were observed in another cattle study [91] as well as in sheep [85]. These inconsistencies on
genus level might solely be due to differences in taxonomic databases/methods used, as the
phylogenetic identification based on ITS 1 or ITS 2 barcode sequences alone, still remains
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challenging for the phylum of Neocallimastigomycota [93]. Furthermore, some of the
genera, especially Piromyces, are known to be polyphyletic [94]. However, it might also
be partially attributed to individual differences among host animals or even differences
among individuals of the same host species (as shown in our study).

Feramyces, found as the prevalent genus in HG fed goats regardless of the used detec-
tion method, is an anaerobic fungal genus that has only been described recently. As an un-
cultured environmental sequence, this clade was first described by Liggenstoffer et al. [39],
later denoted as AL6 by Kittelmann et al. [69], and finally renamed by Hanafy et al. [30]
to Feramyces based on its first cultured representatives. This fungus is characterized by
a wide substrate utilization pattern, being able to metabolize substrates often reported
as not supportive for growth of other AF isolates, such as galactose, fucose, arabinose,
and glucuronic acids. Moreover, some Feramyces strains displayed faster growth and higher
extent on corn stover when compared with the majority of known cultivable AF strains [28].
All these features support our observation of increased abundance of this species in HG
fed animals. Joblinomyces and Tahromyces are also newly described AF; however, there are
no substrate preferences described yet [28]. While Tahromyces was detected in low amounts
in only three animals, Joblinomyces formed a clear majority in AH fed goats (based on ITS1
cloning results), indicating that this genus might prefer the utilization of structural polysac-
charides rather than storage carbohydrates. The sp. JF423626, here prevalent in AH fed
goats, is a cultured, but not yet properly identified, strain, straddled between Neocallimastix
and Orpinomyces (based on the molecular biological data). Both genera belong to the best
studied AF and are known for their ability to utilize a wide spectrum of substrates, such as
cellulose, xylose, glucose, starch, grass, and straw [95]. The features of the potentially new
genus JF423626, however, have yet to be revealed.

Of the uncultured clades identified by ITS1 analysis, the BlackRhino group also
represented a considerable part of sequences in all goats regardless of the diet and can
thus be regarded as core member of the goat rumen. Further investigation of this group
indicated, that AF of the BlackRhino clade, considered up to now as uncultured, could be
identical to the already cultured strain Piromyces sp. SFH682 (MK775335) isolated from
sheep feces. The fact that we could not clearly identify this group highlights the necessity of
a need for another phylogenetic marker system for Neocallimastigomycota. Combining our
results with qPCR data illustrated a decrease of Joblinomyces and increase of Feramyces after
the addition of grain to the diet and supports the findings on strain-specific fermentation of
certain types of carbohydrates [96,97]. This study thus encourages an opinion of Edwards
et al. [95] about the need to re-evaluate the understanding on anaerobic fungi as simple
“fiber degraders” and to reconsider their supposedly limited role in the rumen of animals
fed cereal-supplemented diets.

Summarizing, after comparison of existing, corroborating, but also contradicting
literature, the question remains if and to which extent these disparities arise from the
host animal (e.g., cattle vs. sheep vs. goat) or varying feed compositions. Nevertheless,
our results suggest that the initial, animal-specific community composition has a great
influence on the microbiome shift upon the diet change. This fact was especially true for
the anaerobic fungi diversity during the experiment (Figure 4). Our results highlight that
40% of concentrate proportion in the feed is not inducing SARA, but it leads to a very
specific rumen microbiome that seems adapted to higher starch contents.

4.3. Comparison of the ITS1 and ITS2 as Taxonomic Marker for AF

According to literature the internal transcribed spacer (ITS) region is recommended
as the universal DNA barcode marker for fungi [40,98]. Additionally, the 28S ribosomal
large subunit (28S rRNA gene (LSU); D1/D2 region) might render higher coverage of early
diverging lineages, such as Neocallimastigomycota, Mucoromycota, and Chytridiomy-
cota [98]. Comparison of ITS1 and ITS2 has caused debates on which of these two regions
was more appropriate for fungal phylogenetic analyses. Some authors could not detect
significant superiority of either region for the classification of fungi, but rather an under-
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or over-representation of some fungal groups depending on the barcoding region [99].
Other authors clearly stated an advantage of using ITS1 over ITS2, in part due to shorter
sequence lengths and lower GC content [100].

Here we focused on the taxonomic affiliation of anaerobic fungi by covering the
whole range of the ITS region, and thus split the analyses into two approaches ITS2
(HTS) and ITS1 (cloning library), respectively. In this way we were able to combine the
interpretation and compare the suitability of either fragment. The higher availability of
ITS1 as compared to ITS2 fragments in the databases is also reflected in the slightly higher
diversity obtained by ITS1 cloning than ITS2 HTS. Most of the uncultured AF have only
been detected as environmental nucleic acid sequences (ENAS) by ITS1 primers, which can
explain the missing BlackRhino group and Piromyces 4 in HTS results. However, the ITS1
region has also some disadvantages, as recently shown by Edwards et al. [101] and Yang
et al. [102]. A community composition analysis can result in false higher diversity due to
the heterogeneity of the ITS1 region, resulting in ambiguity in the annotation of sequences.
Thus, integrating secondary structure predictions has been suggested to better classify AF
sequences using ITS1 [66]. According to Edwards et al. [101] the accuracy of the method,
and consequently of the results, is influenced by sample community composition, and there
is an evident need to develop an alternative taxonomic marker for anaerobic fungi [93].

Nevertheless, despite differences between the results from ITS1 and ITS2 analysis
and the aforementioned differences within individual animals, the trend of Feramyces
dominance after the diet switch to HG was consistent.

5. Conclusions

Studies on the influence of a high grain diet on the rumen microbiome are certainly
of great importance in terms of finding an optimal carbohydrate-to-fiber ratio of grain
containing a diet with higher energetic and nutritional quality, but still not associated with
disturbances of the ruminal microbiota leading to metabolic disorders. Strategic grain
supplementation and a rational use of this nutritional resource have practical agricultural
relevance for animal health and productivity.

Our results attest feasibility of abrupt diet switches to high-grain in goats, even with
40% concentrate. It seems to be a very robust system, able to quickly adapt to new
nutrient conditions and still maintain a healthy microbial community. The analyses of
microbial diversity and interrelationships among microbial groups suggest goat rumen
to be a promising source for novel archaea (uncultured Thermoplasmatales cluster) but
also anaerobic fungi isolates (BlackRhino group). Furthermore, studying this habitat
more closely could reveal deeper knowledge on symbiotic interactions of AF, bacteria,
and archaea. Despite a very drastic change in the composition of the anaerobic fungi
population, overall absolute abundance was not significantly changed after the diet switch
from AH to HG.

We could observe that, in addition to the diet, the animal-specific microbiome structure
also heavily influences the response pattern upon the diet change, especially among
Neocallimastigomycota.

The comparison of ITS regions, ITS1 and ITS2, for anaerobic fungi phylogenetic
analysis revealed no clear advantage of one over the other. Instead, our results again
highlight the need to develop a robust barcoding marker for deep-branching fungal lineages
such as Neocallimastigomycota.

Supplementary Materials: The following are available online at https://www.mdpi.com/2076-2
607/9/1/157/s1, Table S1: Taxonomic composition of goat rumen liquid under different diets (AH
at d20 and HG at d30) based on DNA amplicon sequencing targeting the ITS2 region (Fungi and
Neocallimastigomycota) and the 16S rRNA gene V4 region (Archaea and Bacteria). Read abundance
(for V4 at ≥ 1%) is given at phylum- and genus-level. Additionally, for each treatment mean
values ± SD are shown (n = 4). Anaerobic fungi results highlighted in grey. Table S2: Abundance of
anaerobic fungi, bacteria and archaea in rumen liquid samples of goats fed different diets (AH at d20
and HG at d30) determined by qPCR based on ITS1 and 16S rRNA copy number per g fresh matter
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(FM). Mean values of each sample (technical replicates n = 3 for anaerobic fungi and n = 2 for bacteria
and archaea, respectively) and of treatments (n = 4) together with respective SD are shown. Table S3:
Relative abundances of anaerobic fungal clades in the ITS1 clone libraries constructed from rumen
samples of goats fed different diets (AH at d20 and HG at d30). Based on the study of Koetschan
et al. (2014), the term clade is defined as a known species or an uncultivated subgroup (§) within
a monophyletic lineage that has been identified using secondary structure-informed analysis of ITS1
region sequence data. Table S4: Part A lists all significant (p < 0.05) and positive (Pearson’s r > 0.8)
correlation pairs of the investigated parameters for diet characteristics, NGS analysis of ITS2 and
V4 and ITS2 clone library results. Only the lower triangle of the correlation matrix is shown. Part B
lists all significant (p < 0.05) and negative (Pearson’s r < −0.8) correlation pairs of the investigated
parameters for diet characteristics, NGS analysis of ITS2 and V4 and ITS2 clone library results.
Only the lower triangle of the correlation matrix is shown. Below the total sum of correlation pairs
for each parameter is exhibited. Figure S1: Rarefaction curve analysis of 16S rRNA gene amplicon
sequences (V4 region; OTU-based) and the ITS2 region (ASV-based). Figure S2: Diversity analyses
of 16S rRNA gene amplicon sequences (V4 region) on top and the ITS2 region (bottom) based on
OUT/ASV-richness (i.e., species richness) and Shannon–Wiener index. Figure S3: Significant log2fold
changes (DESeq2) of major fungal phyla (top) and Neocallimastigomycota ASVs (bottom) upon diet
switch from forage (AH) to high grain (HG) diet. Figure S4: Phylogenetic relationships of anaerobic
fungal LSU gene sequences generated from the sample G3AH inferred using the UPGMA method
with bootstrap values from 1000 replications. The analysis involved a total of 45 nucleotide sequences
(35 sequences generated from the G3AH sample, 9 sequences of the cultured genera of anaerobic
fungi (Piromyces sp. MK775335, KY368606, and KY368602, N. cameroonii NG060329, KR920745,
and MG992493, F. austinii MG584215, MG584217, and MG605676) plus 1 outgroup sequence.
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