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Abstract

Anaerobic fungi are potent fibre degrading microbes in the equine hindgut, yet our 

understanding of their diversity and community structure is limited to date. In this 

preliminary work, using a clone library approach we studied the diversity of anaerobic fungi 

along six segments of the horse hindgut: caecum, right ventral colon (RVC), left ventral 

colon (LVC), left dorsal colon (LDC), right dorsal colon (RDC) and rectum. Of the 647 ITS1 

clones, 61.7% were assigned to genus level groups that are so far without any cultured 

representatives, and 38.0% were assigned to the cultivated genera Neocallimastix (35.1%), 

Orpinomyces (2.3%), and Anaeromyces (0.6%). AL1 dominated the group of uncultured 

anaerobic fungi, particularly in the RVC (88%) and LDC (97%). Sequences from the LSU 

clone library analysis of the LDC, however, split into two distinct phylogenetic clusters with 
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low sequence identity to Caecomyces sp. (94-96%) and Liebetanzomyces sp. (92%) 

respectively. Sequences belonging to cultured Neocallimastix spp. dominated in LVC (81%) 

and rectum (75.5%). Quantification of anaerobic fungi showed significantly higher 

concentrations in RVC and RDC compared to other segments, which influenced the 

interpretation of the changes in anaerobic fungal diveristy along the horse hindgut. These 

preliminary findings  require further investigation.

Keywords: Anaerobic fungi; Diversity; Uncultured; ITS1; Horse; Hindgut  

1. Introduction

Horses evolved as free-ranging herbivores of grassland environments, with an enlarged 

hindgut adaptation enabling them to obtain energy and nutrients from plant structural 

polysaccharides through microbial fermentation. The hindgut is comprised of two main 

fermentative chambers, the caecum and colon, which together constitute two-thirds of the 

volume of the digestive tract. The hindgut has a combined capacity of over 200 L (Frape 

2010) and accounts for 75% of the mean transit time (23-48h) of dietary particles (van 

Weyenberg et al. 2006). The hindgut is home to bacteria, anaerobic fungi, methanogenic 

archaea and protozoa. Of these, the anaerobic fungi (Neocallimastigomycetes) are the most 

potent in terms of degrading plant fibres due to their complete and very efficient set of plant 

cell-wall degradation enzymes (Gruninger et al. 2014, Haitjema et al. 2014). Despite their 

presence in the horse hindgut within a few weeks of birth (Julliand et al. 1996), almost all the 

current knowledge of anaerobic fungi is derived from ruminant based studies.

Nine genera of anaerobic fungi validly described based on cultivated representatives, 

including those with filamentous monocentric (Neocallimastix, Piromyces, Oontomyces and 

Buwchfawromyces), filamentous polycentric (Orpinomyces, Anaeromyces and Pecoramyces) 

and bulbous (Caecomyces and Cyllamyces) mycelium (Gruninger et al. 2014, Edwards et al. 

2017), have been recently extended by new monocentric genera Feramyces (Hanafy et al. 

2018) and Liebetanzomyces (Joshi et al. 2018). These genera, however, represent only part of 

anaerobic fungal diversity as indicated by the large and growing numbers of internal 

transcribed spacer region 1 (ITS1) sequences in public databases that belong to potentially 

novel, as yet uncultured clades within the Neocallimastigomycetes. Based on the re-

evaluation of publicly available ITS1 sequences, which took into account both primary 

sequence and secondary structure information, Kittelmann et al. (2012) and later Koetschan 
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et al. (2014) proposed a revised phylogeny and pragmatic taxonomy of anaerobic fungi, 

which resulted in 37 reproducible species or genus-level clades. Eighteen of these clades have 

not been cultured, containing only environmental derived sequences, and the number of not 

yet cultivated clades was recently increased to twenty-five (Paul et al. 2018). 

A survey of anaerobic fungi in faeces of 30 different ruminant and non-ruminant herbivore 

species, found that members of the family Equidae clustered apart from the other non-

Equidae herbivores studied (Liggenstoffer et al. 2010). The different domesticated and non-

domesticated equines sampled in the Liggenstoffer et al. (2010) study shared a similar 

anaerobic fungal community, which was mainly composed of two novel genus level groups 

that are now termed AL1 & AL3 (Koetschan et al. 2014). Cultivated anaerobic fungal genera 

were found in equine samples only in limited relative abundance (4-12% of Caecomyces, 2% 

of Neocallimastix, 0.3% of Piromyces, 0.1-0.3% of Anaeromyces). These results suggest that 

the digestive tract of horses is largely occupied by novel, as yet uncultured anaerobic fungi, 

which differ from those previously described from foregut herbivores.

Whilst molecular based analysis of equine anaerobic fungal diversity has been performed on 

faecal samples (Liggenstoffer et al., 2010), it is known that bacterial, protozoal and archaeal 

community composition differs with hindgut segment (Julliand and Grimm 2016; Fliegerova 

et al. 2016). Therefore, there is a clear need to assess if the anaerobic fungal community 

composition also differs along the hindgut, particularly as niche differentiation within the 

anaerobic fungi has previously been proposed (Griffith et al. 2009). In this preliminary study, 

the anaerobic fungal community composition along the hindgut of a mature horse was 

determined using ITS1 based clone libraries.

2. Materials and Methods

2.1. Collection of digesta samples from the horse hindgut

Gut content samples were taken from the six segments of the hindgut of an Anglo-Arabian 

gelded male (24 years old) euthanised for non-research purposes in a local abattoir. The horse 

was maintained on a mixed diet of grass, meadow hay and complementary feed as described 

by Fliegerova et al. (2016), and was healthy with no history of any intestinal disorders. The 

segments sampled were: caecum, right ventral colon (RVC), left ventral colon (LVC), left 

dorsal colon (LDC), right dorsal colon (RDC) and rectum (representing faeces).  Gut 

segments were tied off to prevent mixing between neighbouring segments, and the whole 
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content from a section mixed thoroughly before a sample (approx 500 g) was taken. Samples 

were placed in labelled plastic containers and transported on wet ice back to the laboratory 

where they were frozen (at -20oC) and then freeze-dried. Freeze-dried material was stored at -

20oC until DNA extraction.

2.2. DNA extraction 

Freeze-dried gut content (5 g) was homogenized using a mortar and pestle with liquid 

nitrogen. Genomic DNA was then extracted from 400 mg of the resulting powder using the 

cetyltrimethylammonium bromide extraction protocol of Gardes and Bruns (1993) after 

modification with the respect to the amount of sample material used. The concentration and 

purity of extracted nucleic acids was checked using a NanoDrop 2000c UV-Vis 

spectrophotometer (Thermo Scientific, U.S.A), and DNA extracts were stored at -20oC until 

use.

2.3. PCR amplification

Amplification of the anaerobic fungal ITS1 region from each sample was carried out with the 

combination of the fungal universal ITS1 forward primer (Gardes and Bruns 1993) and the 

Neocallimastigomycetes specific 5.8S rRNA gene reverse primer (Edwards et al. 2008). This 

resulted in an amplicon of approximately 350 bp in length, as described previously by 

Fliegerova et al. (2010). The PCR reaction (50 l) was performed with a PPP Master Mix kit 

(Top-Bio, Czech Republic) and 0.3 μM of each primer using the following thermal cycling 

conditions: 33 cycles of denaturation at 94°C for 1 min, annealing at 58°C for 30 s and 

extension at 72°C for 45 s with an initial cycle of 94°C for 4 min and final cycle of 72°C for 2 

min. Each sample was PCR amplified in quadruplicate and then pooled after successful 

amplification and verified by agarose gel electrophoresis.

For one sample, the LDC, the ribosomal large subunit 28S rRNA (LSU) was also amplified 

in quadruplicate with universal primers NL1 and NL4 as described previously by Fliegerova 

et al. (2006). The rationale for this analysis is explained in the results section. 

Pooled PCR amplicons of the correct length were excised from an agarose gel with a sterile 

scalpel blade, purified and concentrated using a QIAquick Gel Extraction Kit (Qiagen, 

Germany).

2.4. Construction of clone libraries and sequencing

178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236



The TOPO® TA Cloning® Kit for Sequencing (Life Technologies, USA) was used for the 

preparation of the ITS1 clone libraries for each segment of equine hindgut, and the LSU 

clone library of the LDC segment. Ligation of the PCR amplicons into pCR4-TOPO vector 

was performed at room temperature for 30 min followed by transformation into competent 

One Shot TOP10 Escherichia coli cells (30 min on ice). Randomly selected clones of E. coli 

grown overnight in lysogeny broth plates with ampicillin (50 µg/ml) were checked by PCR 

with M13 primers for the presence of the ITS1 and LSU fragments of expected length. 

Plasmid DNA was then isolated from 881 ITS1 clones and 20 LSU clones using a 

GenElute™ HP Plasmid Miniprep Kit (Sigma-Aldrich, USA). Purified plasmid DNAs were 

quantified using a NanoDrop ND-1000 UV-Vis Sectrophotometer (NanoDrop Technologies, 

USA) and Sanger sequenced (SEQme, Czech Republic). Generated sequences were checked 

for errors and any vector contamination removed. Of the clones sequenced, 647 of the ITS1 

clones and 17 of the LSU clones yielded clear and unambiguous sequence data that were used 

for further analysis.

2.5. Taxonomic and phylogenetic analysis

Taxonomic assignment of ITS1 sequences (97% identity threshold) was done in QIIME 

version 1.8 (Caporaso et al. 2010) by BLAST against the anaerobic fungal ITS1 reference 

database (Koetschan et al. 2014). The 647 cloned sequences with taxonomic assignment from 

the six libraries were concatenated into a single fasta file, and a sequence map (seqs_otus.txt) 

was manually built for input into the script “make_otu_table.py”. The resulting relative 

abundance table was summarized at the clade level. A similar process was followed with the 

LSU sequence data, except the similarity search was carried out using BLAST against 

GenBank.

Evolutionary analyses of ITS1 sequences and the LSU sequences from the LDC sample were 

separately performed using the software MEGA 6 (Tamura et al. 2013) to construct 

phylogenetic trees, with 1,000 replicates for bootstrap analysis, using the UPGMA method. 

LSU genes of described genera Caecomyces (JQ782555, KM878679), Cyllamyces 

(DQ273829,  KY386297), Piromyces (JF974096, JF974119, JN939159), Buwchfawromyces 

(KP205570,  NG058679), Feramyces (MG584197, MG584228, MG605676), Neocallimastix 

(JF974094, JN939158, KT274174, KR920745), Pecoramyces (JN939127, KX961618), 

Orpinomyces (HQ703476, JN939163, KM878680), Anaeromyces (JN939157, JN939170, 
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JN939172), Liebetanzomyces (MH468763) and Oontomyces (JX017314, JX017315) were 

used as reference sequences.

The ITS1 nucleotide sequences generated from the horse hindgut have been deposited in the 

GenBank database under the following accession numbers: MH038102 - MH038269 

(caecum), MH038399 - MH038497 (RVC), MH038498 - MH038612 (LVC), MH038272 - 

MH038398 (LDC), MH038613 - MH038694 (RDC) and MH038695 - MH038784 (rectum). 

The LSU sequences of the LDC have been deposited in the GenBank database under the 

accession numbers MH125212 - MH125228.

2.6. qPCR analysis

The MX 3005P QPCR System (Stratagene) and the Kapa SYBR Fast qPCR Master mix 

(Kapa Biosystems) was used for the qPCR determination of ITS1 gene copy numbers in each 

sample using the ITS1 primer pair and cycling conditions as described above (see PCR 

amplification). The standard curve was created (in triplicate) using a 10‐fold dilution series of 

a pCR4-TOPO plasmid containing the ITS1 region of a Piromyces isolate (NCBI Accession 

No. KY368107). ITS1 copy numbers were determined (in triplicate) from 1 µl of ten-fold 

diluted DNA, and data expressed per g of dry matter of digesta. Three replicates of a negative 

control sample without DNA template were also included in the qPCR assay. The qPCR 

assay efficiency was 101.5%, and quantitation was linear over eight orders of magnitude (101 

to 108 gene copy μl-1). The unpaired t-test (Microsoft Excel 2010) was used to identify 

significant differences in the counts of anaerobic fungi among all the samples. Significant 

differences were declared when P 0.05. A quantitative profile of the anaerobic fungi was <  

then calculated, using the ratio between the total ITS1 gene copy number and relative 

abundance of each clade for each hindgut segment.

3. Results

3.1. ITS1 based diversity analysis of anaerobic fungi in the horse hindgut 

Of the 647 successfully sequenced ITS1 clones from all six segments of the horse hindgut, 

the 645 clones appeared to be anaerobic fungal in origin and only 2 of these sequences 

(0.3%) could not be further taxonomically assigned within the class Neocallimastigomycetes 

using either the anaerobic fungal ITS1 reference database or GenBank. On average 61.7% of 

all the sequences were represented by genus-level groups that have so far only been described 

in the literature based on sequence data: AL1, AL7, DT1 and KF1 (as defined by Koetschan 
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et al. 2014). The cultured genera Neocallimastix, Orpinomyces and Anaeromyces represented 

the remaining 38.0% sequences that could be taxonomically assigned. Phylogenetic 

relationships of ITS1 sequences of uncultured anaerobic fungi generated from the horse 

hindgut and cultured genera is shown in Fig. S1. 

3.2. Distribution and quantification of anaerobic fungi along the horse hindgut

The relative abundance of the different anaerobic fungal clades (as defined by Koetschan et 

al. 2014) along the six segments of the horse hindgut are shown (Fig. 1.). The AL1 clade 

represented 53% of the total sequences and was present throughout the hindgut, however, its 

relative abundance differed among gut segments. AL1 represented almost all of the anaerobic 

fungi in the RVC (88%) and LDC (97%), and was the most abundant clade in the caecum 

(62%) and RDC (53%). In contrast, the relative abundance of AL1 in the LVC (4%) and the 

rectum (3%) was very low. Generally, the decreased abundance of AL1 in certain gut 

segments seemed to be associated with an increase in the abundance of the Neocallimastix 1 

clade. This clade was the second most abundant (35.1% of the total sequences) and was 

detected in all segments. The third most abundant clade was AL7 (4.3% of the total 

sequences), and was also detected in all segments. In contrast, the KF1 clade (4.2% of the 

total sequences) was only detected in the LVC (7%), RDC (3%) and rectum (17%). 

Sequences of the other less abundant fungi (Orpinomyces 1a, Orpinomyces 1b, Anaeromyces 

1 and DT1) were relatively minor (13.7% of total sequences) and detected only in some 

hindgut segments.

Total anaerobic fungal concentrations differed between segments, with the exception of the 

caecum and LDC (Fig. 2.). The RVC followed by RDC was found to contain the highest 

concentrations of anaerobic fungi, and the lowest concentrations of anaerobic fungi were 

detected in the LVC and rectum. It can be clearly seen that the lower concentrations of total 

anaerobic fungi in these segments is associated with a substantial decrease in the amount of 

the AL1 clade, rather than an increase in the Neocallimastix 1 clade (as indicated by Fig. 1.). 

Fig. 1

Fig. 2

3.3. LSU based diversity analysis of the LDC

As 97% of the ITS1 sequences from the LDC segment belonged to the monophyletic AL1 

clade (Fig. 3), this segment was also analysed using an LSU based clone library in order to 
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better elucidate the taxonomic position of this uncultured clade. Tree topology showed that 

the LSU sequences obtained (n=17) formed two distinct clusters (Fig. 4). The clones 

representing cluster I (n=8) had highest sequence identity (94 - 96%) to a sequence belonging 

to a cultured Caecomyces communis (KM878679), and formed a sister group to the  

Caecomyces/Cyllamyces group. The clones representing cluster II (n=9) had highest sequence 

identity (91 - 92%) to a sequences belonging to a cultured Liebetanzomyces sp. (MH468763) 

and Anaeromyces sp. (MG605690), however, the cloned sequences clustered distantly from 

the reference anaerobic fungi present in the tree.

Fig. 3.

Fig. 4.

4. Discussion

Gut microbes are essential colonizers of the mammalian digestive tract. They are involved in 

food decomposition, production of vitamins and micronutrients. Microbial fermentative end-

products (especially acetate, propionate and butyrate) supply the host body by energy. 

Microbiota of digestive tract is also involved in a variety of other metabolic and physiological 

functions including the shaping of the immune system. The importance of the equine 

intestinal microbial ecosystem for animal health and performance is well established (Dicks 

et al. 2014), however, research has primarily focussed on only bacteria. The investigation of 

the anaerobic fungi in the equine hindgut to date has been limited and, to the best of our 

knowledge, there is no study of the diversity of anaerobic fungi in the different anatomo-

physiological segments of the horse hindgut.

Our work showed that an uncultured Neocallimastigales clade named AL1 was prevalent in 

the equine hindgut. This finding is in agreement with an ITS1 based next generation 

sequencing study that found the NG1 (=AL1 in Kittelmann et al. 2012) group could account 

for 56.7%-99.9% of the total anaerobic fungi in the faeces of certain horses and zebra 

(Liggenstoffer et al. 2010). It was surprising to observe that the AL1 clade was greatly 

decreased in the LVC and rectum, with the reason for these decreases not clear. 

The AL1 clade is not specific to equines, as it was also detected (17.8- 49.5%) in a variety of 

other foregut fermenters (Liggenstoffer et al. 2010). However, ITS1 sequences of the AL1 

clade retrieved in this study were most similar or identical only with those from the zebra and 

horse (deposited in the GenBank database). The effort to elucidate the phylogenetic 

414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472



relationships of the ITS1 defined AL1 clade using the LSU resulted in splitting of the 

sequences into two non-related clusters. As this contrasted the monophyletic clade seen with 

ITS1, further work is needed to confirm the basis of this finding.

The second most numerous clade of uncultivated anaerobic fungi identified in horse faeces 

by Liggenstoffer et al. (2010), clade NG3 (=AL3 in Kittelmann et al. 2012), has not been 

found in any part of the horse hindgut sampled in this study. On the other hand, sequences of 

the group NG7 (=AL7 in Kittelmann et al. 2012) retrieved by Liggenstoffer et al. (2010) in 

low relative abundance only from Somali wild ass faeces (0.6%), represented 4% of total 

clones in the present study. Sequences of another group of anaerobic fungi, the KF1 clade, 

which represented 17% of the sequences in the horse rectum in this study, were first detected 

in cow manure and were described as an undistinguished Cyllamyces/Caecomyces cluster of 

uncultured fungi (Fliegerova et al. 2010). 

Regarding the known cultivable anaerobic fungi, only the clade Neocallimastix 1 colonized 

the hindgut of the studied horse with a dominant relative abundance in the LVC and rectum. 

However, quantitative profiling showed that this was due to the absence of clade AL1, rather 

than an increased amount of Neocallimastix 1 in these segments. The Neocallimastix 1 

sequences were mostly similar to those obtained from ruminants, especially from cow, bison 

and yak. Neocallimastix is known by its excellent hydrolytic properties and multi-functional 

cellulosomal enzymes, and is presumed to be a very effective (hemi)cellulose degrader 

(Gruninger et al. 2014, Wei et al. 2016). In horse, zebra and donkey faeces analysed by 

Liggenstoffer et al. (2010) this genus was either absent or represented at very low relative 

abundance (< 2%). However, in a sample from a Somali wild ass, Neocallimastix represented 

45% of all sequences.

Whilst the cause of the considerable difference in anaerobic fungal diversity between the 

RVC and LVC is not clear, the difference between the neighbouring LVC and LDC may be 

related to the pelvic flexure. This narrow junction is responsible for the selective retention of 

coarse particles. Less digested particles are retained in the caecum and LVC, whereas liquid 

and finer particles move on into the LDC. These retropulsive-propulsive movements keep the 

caecum and the whole ventral colon filled, increasing the fermentation time of plant biomass. 

These segments of the hindgut are, therefore, the sites with the highest digesta mean retention 

time of (about 9 hours) and represents the main site of lignocellulose degradation (Van 
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Weyenberg et al. 2006). As well as a longer time to degrade the structural polysaccharides, 

this also provides more time for the propagation of microorganisms.

The implication of the RVC ecosystem in forage degradation has been highlighted already by 

de Fombelle et al. (2003), due to the decreased proportion of cellulose in the digesta after 

passing through the RVC. This corresponds well with our finding of highest anaerobic fungal 

concentrations in the RVC compared to the other hindgut segments. On the other hand, the 

segments with the lowest anaerobic fungal concentrations (LVC and rectum) were associated 

with a decrease in the amount of the AL1 clade. Variations in the concentration of anaerobic 

fungi found among different gut segments in this study, however, contrasts with study of 

Dougal et al. (2012) where no effect of gut segment was seen based on the caecum, RDC and 

rectum sites that were sampled.

The RDC is the site of another selective mechanism (known as the colonic separation 

mechanism). This mechanism is responsible for the prolonged retention of fluid and smaller 

food particles (Drogoul et al. 2000). How this mechanism may contribute to the decrease of 

the AL1 clade in the rectum is not clear. Digesta samples from this part of the hindgut, could 

in future studies be separated into a liquid and a solid fraction to provide further insight, as 

anaerobic fungal vegetative biomass (as opposed to the motile zoospores) is tightly attached 

to plant particles. 

Faeces samples are often used as reference samples to describe the microbial population of 

the digestive tract, because the faecal microbiota might be expected to contain representatives 

from all regions of the large intestine.  Our study provides evidence that horse faecal samples 

can serve as qualitative reference samples, as almost all clades of anaerobic fungi found in 

the hindgut were also present in the faeces sample. The only exception was Anaeromyces, 

which was only detected in some segments and at very low relative abundances. However, 

the relative abundance and concentrations of anaerobic fungi differed considerably along the 

horse hindgut and the functional implications of this variation requires further investigation. 

Differences in anaerobic fungal concentrations along the ruminant digestive tract is known to 

occur (Davies et al., 1993). Furthermore, a cultivation based study by Griffith et al. (2009) 

compared the anaerobic fungi in the rumen and faeces of the same cow, and found 

considerable differences in the abundance of the different taxa. Fungi with bulbous 

morphotypes (Caecomyces and Cyllamyces) were the most abundant genera in fresh faeces, 

where they comprised a 5-fold greater proportion of the total fungal population than in the 
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rumen. Polycentric morphotypes (Orpinomyces and Anaeromyces) were less frequently 

isolated from fresh faeces as compared to rumen digesta. Conversely, a cultivation 

independent study showed no difference in anaerobic fungal community composition in the 

rumen, duodenum and faeces of three different cows (Jimenez et al. 2007). 

We acknowledge that no general conclusion can be made from the analysis of samples from 

one horse, and the findings of this preliminary study should be used cautiously. Nevertheless, 

the data presented here provide an important next step in revealing the considerable, as yet 

largely uncharacterised, anaerobic fungal diversity in the equine hindgut. It also highlights 

the need to conduct further studies to look at the activity, concentrations and diversity of the 

anaerobic fungi throughout the digestive tract, due to evidence of differences between 

hindgut segments.
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Figure captions

Fig. 1. Relative abundances of anaerobic fungal clades (as defined by Koetschan et al. 2014) 

in the ITS1 clone libraries constructed from six segments of the horse hindgut. The total 

number of clones in each library is indicated in parentheses on the x-axis. The arrow indicates 

the pelvic flexure position between the LVC and LDC.

Fig. 2. Quantitative profiles of anaerobic fungal clades (as defined by Koetschan et al. 2014) 

in the ITS1 clone libraries constructed from six segments of the horse hindgut. The top of the 

bars indicate mean concentrations (n=3) of total anaerobic fungal ITS1 gene copies in six 

different segments of horse hindgut, and different letters indicate significant differences (P 

 0.05). Quantitative profiles were then generated from clade relative abundances and the <
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ITS1 concentrations in each segment. The arrow indicates the pelvic flexure position between 

the LVC and LDC.

Fig. 3. Phylogenetic relationships of ITS1 sequences of anaerobic fungi generated from the 

LDC inferred using the UPGMA method with bootstrap values from 1,000 replications. The 

evolutionary distances were computed using the Jukes-Cantor method. The analysis involved 

a total of 142 nucleotide sequences (127 sequences generated from the LDC in this study and 

14 of the most closely related sequences plus 1 outgroup sequence).

Fig. 4. Phylogenetic relationships of anaerobic fungal LSU gene sequences generated from 

the LDC inferred using the UPGMA method with bootstrap values from 1,000 replications. 

The evolutionary distances were computed using the Jukes-Cantor method. The analysis 

involved a total of 45 nucleotide sequences (17 sequences generated from the LDC, 27 

sequences of the cultured genera of anaerobic fungi plus 1 outgroup sequence).
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