238 research outputs found

    T cells that cannot respond to TGF-β escape control by CD4+CD25+ regulatory T cells

    Get PDF
    CD4+CD25+ regulatory T (T reg) cells play a pivotal role in control of the immune response. Transforming growth factor-β (TGF-β) has been shown to be required for T reg cell activity; however, precisely how it is involved in the mechanism of suppression is poorly understood. Using the T cell transfer model of colitis, we show here that CD4+CD45RBhigh T cells that express a dominant negative TGF-β receptor type II (dnTβRII) and therefore cannot respond to TGF-β, escape control by T reg cells in vivo. CD4+CD25+ T reg cells from the thymus of dnTβRII mice retain the ability to inhibit colitis, suggesting that T cell responsiveness to TGF-β is not required for the development or peripheral function of thymic-derived T reg cells. In contrast, T reg cell activity among the peripheral dnTβRII CD4+CD25+ population is masked by the presence of colitogenic effector cells that cannot be suppressed. Finally, we show that CD4+CD25+ T reg cells develop normally in the absence of TGF-β1 and retain the ability to suppress colitis in vivo. Importantly, the function of TGF-β1−/− T reg cells was abrogated by anti–TGF-β monoclonal antibody, indicating that functional TGF-β can be provided by a non–T reg cell source

    A ‘wiring diagram’ for source strength traits impacting wheat yield potential

    Get PDF
    Source traits are currently of great interest for the enhancement of yield potential; for example, much effort is being expended to find ways of modifying photosynthesis. However, photosynthesis is but one component of crop regulation, so sink activities and the coordination of diverse processes throughout the crop must be considered in an integrated, systems approach. A set of ‘wiring diagrams’ has been devised as a visual tool to integrate the interactions of component processes at different stages of wheat development. They enable the roles of chloroplast, leaf, and whole-canopy processes to be seen in the context of sink development and crop growth as a whole. In this review, we dissect source traits both anatomically (foliar and non-foliar) and temporally (pre- and post-anthesis), and consider the evidence for their regulation at local and whole-plant/crop levels. We consider how the formation of a canopy creates challenges (self-occlusion) and opportunities (dynamic photosynthesis) for components of photosynthesis. Lastly, we discuss the regulation of source activity by feedback regulation. The review is written in the framework of the wiring diagrams which, as integrated descriptors of traits underpinning grain yield, are designed to provide a potential workspace for breeders and other crop scientists that, along with high-throughput and precision phenotyping data, genetics, and bioinformatics, will help build future dynamic models of trait and gene interactions to achieve yield gains in wheat and other field crops.Research of the authors on physiology and genetics of wheat yield potential has been funded by many different sources over the years. Recent grants include the International Wheat Yield Partnership (IWYP) projects funded by the Biotechnology and Biological Research Council of the UK [BB/N021061/1, BB/ N020871/2, BB/S005072/1] (IWYP48, IWYP64, IWYP163 and IWYP25FP, respectively), as well as projects funded by other donors (State Research Agency of Spain: AGL2015-69595-R and RTI2018-096213-B-100)

    Perspective‐Taking and Depth of Theory‐of‐Mind Reasoning in Sequential‐Move Games

    Full text link
    Theory‐of‐mind (ToM) involves modeling an individual’s mental states to plan one’s action and to anticipate others’ actions through recursive reasoning that may be myopic (with limited recursion) or predictive (with full recursion). ToM recursion was examined using a series of two‐player, sequential‐move matrix games with a maximum of three steps. Participants were assigned the role of Player I, controlling the initial and the last step, or of Player II, controlling the second step. Appropriate for the assigned role, participants either anticipated or planned Player II’s strategy at the second step, and then determined Player I’s optimal strategy at the first step. Participants more readily used predictive reasoning as Player II (i.e., planning one’s own move) than as Player I (i.e., anticipating an opponent’s move), although they did not differ when translating reasoning outcome about the second step to optimal action in the first step. Perspective‐taking influenced likelihood of predictive reasoning, but it did not affect the rate at which participants acquired it during the experimental block. We conclude that the depth of ToM recursion (related to perspective‐taking mechanisms) and rational application of belief–desire to action (instrumental rationality) constitute separate cognitive processes in ToM reasoning.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/91101/1/j.1551-6709.2012.01238.x.pd

    Full production cycle performance of gene-edited, sterile Atlantic salmon - growth, smoltification, welfare indicators and fillet composition

    Get PDF
    Using germ cell-free (GCF), sterile, dnd-knockout salmon for farming could solve the problems associated with precocious maturation and genetic introgression of farmed breeds into wild populations. However, prior to using GCF fish in the salmon farming industry, it is crucial to understand if, or how, the GCF phenotype differs from wild type (WT) counterparts in terms of growth and welfare. To characterize the GCF phenotype throughout a production cycle, we reared GCF and WT salmon in indoor common garden tanks for 3 years, until harvest size. Regarding body size, smoltification markers (mRNA levels of gill Na+/K+-ATPase [NKA] subunits), plasma stress indicators (pH, glucose, sodium, chloride, calcium), relative heart size, prevalence of vertebra deformities and fillet proximate composition, GCF fish could not be distinguished from WTs. Transient differences were detected in plasma concentrations of lactate and osmolality, and only a few genes were differentially expressed in WT and GCF transcriptomes of muscle and pituitary. At harvest, fillets from GCF and WT salmon contained the same amount of omega-3 fatty acids, however the relative content of omega-3 fatty acids was higher in GCF compared to WT males. Towards harvest size, body growth rate, condition factor and relative liver size were significantly higher in WT than in GCF fish, probably relating to initiation of puberty in WTs. Since GCF salmon never become sexually mature, it is possible to postpone the time of harvest to exploit the growth potential uninhibited by sexual maturation. In conclusion, GCF salmon performed to a large extent similarly to their WT counterparts but had the clear advantage of never maturing.publishedVersio

    Nilotinib and Imatinib Are Comparably Effective in Reducing Growth of Human Eosinophil Leukemia Cells in a Newly Established Xenograft Model

    Get PDF
    We developed a xenograft model of human Chronic Eosinophilic Leukemia (CEL) to study disease progression and remission-induction under therapy with tyrosine kinase inhibitors using imatinib and nilotinib as examples. The FIP1L1/PDGFRA+ human CEL cell lineEOL-1 was injected intravenously into scid mice, and MR imaging and FACS analysis of mouse blood samples were performed to monitor disease development and the effects of imatinib and nilotinib. Organ infiltration was analyzed in detail by immunohistochemistry after sacrifice. All animals developed CEL and within one week of therapy, complete remissions were seen with both imatinib and nilotinib, resulting in reduced total tumor volumes by MR-imaging and almost complete disappearance of EOL-1 cells in the peripheral blood and in tissues. The new model system is feasible for the evaluation of new tyrosine kinase inhibitors and our data suggest that nilotinib may be a valuable additional targeted drug active in patients with FIP1L1/PDGFRA+ CEL

    Essential versus accessory aspects of cell death: recommendations of the NCCD 2015

    Get PDF
    Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as ‘accidental cell death’ (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. ‘Regulated cell death’ (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to classify it into a few subtypes, which often (but not always) exhibit stereotyped morphologic features. Nonetheless, efficiently inhibiting the processes that are commonly thought to cause RCD, such as the activation of executioner caspases in the course of apoptosis, does not exert true cytoprotective effects in the mammalian system, but simply alters the kinetics of cellular demise as it shifts its morphologic and biochemical correlates. Conversely, bona fide cytoprotection can be achieved by inhibiting the transduction of lethal signals in the early phases of the process, when adaptive responses are still operational. Thus, the mechanisms that truly execute RCD may be less understood, less inhibitable and perhaps more homogeneous than previously thought. Here, the Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death

    Testing for an effect of a mindfulness induction on child executive functions

    Get PDF
    Several sessions of mindfulness practice can exert positive gains for child executive functions (EF); however, the evidence for effects of a mindfulness induction, on EF for adults, is mixed and this effect has not been tested in children. The immediate effect of an age appropriate 3-min mindfulness induction on EF of children aged 4–7 years was tested. Participants (N = 156) were randomly assigned to a mindfulness induction or dot-to-dot activity comparison group before completing four measures of EF. A composite score for EF was calculated from summed z scores of the four EF measures. A difference at baseline in behavioural difficulties between the mindfulness induction and comparison group meant that data was analysed using a hierarchical regression. The mindfulness induction resulted in higher average performance for the composite EF score (M = 0.12) compared to the comparison group (M = − 0.05). Behavioural difficulties significantly predicted 5.3% of the variance in EF performance but participation in the mindfulness or comparison induction did not significantly affect EF. The non-significant effect of a mindfulness induction to exert immediate effects on EF fits within broader evidence reporting mixed effects when similar experimental designs have been used with adults. The findings are discussed with consideration of the extent to which methodological differences may account for these mixed effects and how mindfulness inductions fit within broader theoretical and empirical understanding of the effects of mindfulness on EF

    Transcription Profiling of Epstein-Barr Virus Nuclear Antigen (EBNA)-1 Expressing Cells Suggests Targeting of Chromatin Remodeling Complexes

    Get PDF
    The Epstein-Barr virus (EBV) encoded nuclear antigen (EBNA)-1 regulates virus replication and transcription, and participates in the remodeling of the cellular environment that accompanies EBV induced B-cell immortalization and malignant transformation. The putative cellular targets of these effects of EBNA-1 are largely unknown. To address this issue we have profiled the transcriptional changes induced by short- and long-term expression of EBNA-1 in the EBV negative B-cell lymphoma BJAB. Three hundred and nineteen cellular genes were regulated in a conditional transfectant shortly after EBNA-1 induction while a ten fold higher number of genes was regulated upon continuous EBNA-1 expression. Promoter analysis of the differentially regulated genes demonstrated a significant enrichment of putative EBNA-1 binding sites suggesting that EBNA-1 may directly influence the transcription of a subset of genes. Gene ontology analysis of forty seven genes that were consistently regulated independently on the time of EBNA-1 expression revealed an unexpected enrichment of genes involved in the maintenance of chromatin architecture. The interaction network of the affected gene products suggests that EBNA-1 may promote a broad rearrangement of the cellular transcription landscape by altering the expression of key components of chromatin remodeling complexes

    Intestinal B-cells license metabolic T-cell activation in NASH microbiota/antigen-independently and contribute to fibrosis by IgA-FcR signalling

    Get PDF
    BACKGROUND & AIMS The progression of nonalcoholic steatohepatitis (NASH) to fibrosis and hepatocellular carcinoma (HCC) is aggravated by auto-aggressive T cells. The gut-liver axis contributes to NASH, but the mechanisms involved and the consequences for NASH-induced fibrosis and liver cancer remain unknown. We investigated the role of gastrointestinal B cells in the development of NASH, fibrosis and NASH-induced HCC. METHODS C57BL/6J wild-type (WT), B cell-deficient and different immunoglobulin-deficient or transgenic mice were fed distinct NASH diets (for example, choline-deficient high-fat diet, CD-HFD) or chow diet for 6 or 12 months, whereafter NASH, fibrosis, and NASH-induced HCC were assessed and analysed. Specific pathogen-free/germ-free WT and ÎźMT mice (containing B cells only in the gastrointestinal tract) were fed a CD-HFD, and treated with an anti-CD20 antibody, whereafter NASH and fibrosis were assessed. Tissue biopsy samples from patients with NAFL, NASH and cirrhosis were analysed to correlate the secretion of immunoglobulins to clinicopathological features. Flow cytometry, immunohistochemistry and scRNA-Seq analysis were performed in liver and gastrointestinal tissue for immune cells in mice and humans. RESULTS Activated intestinal B cells were increased in mouse and human NASH samples and licensed metabolic T-cell activation to induce NASH independently of antigen-specificity and gut microbiota. Genetic or therapeutic depletion of systemic or gastrointestinal B cells prevented or reverted NASH and liver fibrosis. IgA secretion was necessary for fibrosis induction by activating CD11b+CCR2+F4/80+CD11c-FCGR1+ hepatic myeloid cells through an IgA-FcR signalling axis. Similarly, patients with NASH had increased numbers of activated intestinal B-cells and showed a positive correlation between IgA levels and activated FcRÎł+ hepatic myeloid cells as well extent of liver fibrosis. CONCLUSIONS Intestinal B cells and the IgA-FcR signalling axis represent potential therapeutic targets for treating NASH. IMPACT AND IMPLICATIONS Nonalcoholic steatohepatitis (NASH) is a chronic inflammatory condition on the rise and can lead to hepatocellular carcinoma (HCC), the 3rd most common cause of cancer-related death worldwide. Currently, there is no effective treatment for this progressive disease that correlates with a marked risk of HCC mortality and carries a substantial healthcare burden. To date, among all the solid tumours, especially in HCC, the incidence and mortality rates are almost the same, making it crucial to find curative treatments for chronic diseases, such as NASH, which highly predispose to tumorigenesis. We have previously shown that NASH is an auto-aggressive condition aggravated, amongst others, by T cells. Therefore, we hypothesized that B cells might have a role in disease induction and progression. Our present work highlights that B cells have a dual role in NASH pathogenesis, being implicated in the activation of auto-aggressive T cells and the development of fibrosis via activation of monocyte-derived macrophages by secreted immunoglobulins (e.g., IgA). Furthermore, we could show that the absence of B cells prevented HCC development. B-cell intrinsic signalling pathways, secreted immunoglobulins, and interactions of B cells with other immune cells are potential targets in combinatorial NASH therapies against inflammation and fibrosis
    • …
    corecore