32 research outputs found

    La ecología de los parásitos zoonóticos en Carnivora

    Get PDF
    El orden Carnivora incluye más de 300 especies que varían en tamaño en muchos órdenes de magnitud y habitan en todos los biomas principales, desde las selvas tropicales hasta los mares polares. La gran diversidad de parásitos carnívoros representa una fuente de posibles enfermedades emergentes en humanos. El riesgo zoonótico de este grupo puede deberse en parte, a una diversidad funcional excepcionalmente alta de las especies hospedantes en cuanto a características conductuales, fisiológicas y ecológicas. Revisamos los patrones macroecológicos globales de los parásitos zoonóticos dentro de los carnívoros y exploramos las características de las especies que sirven como anfitriones de los parásitos zoonóticos. Sintetizamos la investigación teórica y empírica y sugerimos trabajos futuros sobre el papel de los carnívoros como multiplicadores bióticos, reguladores y centinelas de enfermedades zoonóticas como fronteras de investigación oportunas

    Body size and digestive system shape resource selection by ungulates : a cross-taxa test of the forage maturation hypothesis

    Get PDF
    The forage maturation hypothesis (FMH) states that energy intake for ungulates is maximised when forage biomass is at intermediate levels. Nevertheless, metabolic allometry and different digestive systems suggest that resource selection should vary across ungulate species. By combining GPS relocations with remotely sensed data on forage characteristics and surface water, we quantified the effect of body size and digestive system in determining movements of 30 populations of hindgut fermenters (equids) and ruminants across biomes. Selection for intermediate forage biomass was negatively related to body size, regardless of digestive system. Selection for proximity to surface water was stronger for equids relative to ruminants, regardless of body size. To be more generalisable, we suggest that the FMH explicitly incorporate contingencies in body size and digestive system, with small-bodied ruminants selecting more strongly for potential energy intake, and hindgut fermenters selecting more strongly for surface water.DATA AVAILABILITY STATEMENT : The dataset used in our analyses is available via Dryad repository (https://doi.org/10.5061/dryad.jsxksn09f) following a year-long embargo from publication of the manuscript. The coordinates associated with mountain zebra data are not provided in an effort to protect critically endangered black rhino (Diceros bicornis) locations. Interested researchers can contact the data owner (Minnesota Zoo) directly for inquiries.https://wileyonlinelibrary.com/journal/elehj2022Mammal Research InstituteZoology and Entomolog

    Moving in the anthropocene: global reductions in terrestrial mammalian movements

    Get PDF
    Animal movement is fundamental for ecosystem functioning and species survival, yet the effects of the anthropogenic footprint on animal movements have not been estimated across species. Using a unique GPS-tracking database of 803 individuals across 57 species, we found that movements of mammals in areas with a comparatively high human footprint were on average one-half to one-third the extent of their movements in areas with a low human footprint. We attribute this reduction to behavioral changes of individual animals and to the exclusion of species with long-range movements from areas with higher human impact. Global loss of vagility alters a key ecological trait of animals that affects not only population persistence but also ecosystem processes such as predator-prey interactions, nutrient cycling, and disease transmission

    The tick biocontrol agent Metarhizium brunneum (= M. anisopliae) (strain F52) does not reduce non-target arthropods.

    No full text
    Previous studies have found that Met52®, which contains the entomopathogenic fungus Metarhizium brunneum, is effective in reducing the abundance of Ixodes scapularis, the tick vector for the bacterium causing Lyme disease and for other tick-borne pathogens. Given widespread interest in effective, safe methods for controlling ticks, Met52 has the potential to be used at increasing scales. The non-target impacts of Met52, as applied for tick control, have not yet been assessed. A Before-After-Control-Impact experiment was conducted to assess the effects of Met52 on non-target arthropods in lawn and forest habitats typical of residential yards. Ground-dwelling arthropods were collected using bulk sampling of soil and litter, and pitfall sampling. Arthropods were sampled once before and twice after treatment of plots with either Met52 or water (control). Multivariate general linear models were used to jointly model the abundance of arthropod orders. For each sampling method and post-spray sampling occasion, Akaike Information Criterion values were used to compare the fits of two alternative models: one that included effects of period (before vs. after spray), habitat (lawn vs. forest), and treatment (Met52 vs. control), versus a nested null model that included effects of period, and habitat, but no treatment effect. The null model was consistently better supported by the data. Significant effects were found of period and habitat but not treatment. Retrospective power analysis indicated the study had 80% power to detect a 50% reduction in arthropod abundance, as measured by bulk samples taken before versus one week after treatment. The deployment of Met52 in suburban settings is unlikely to cause meaningful reductions in the abundance of non-target arthropods

    Comparison of alternative models for abundance of arthropods in bulk samples taken pre-treatment and 3 weeks post-treatment.

    No full text
    <p>AIC values indicated the best fitting model included effects of period, habitat, and location, but not treatment.</p

    Comparison of alternative models for abundance of arthropods in pitfall samples taken pre-treatment and 1 week post-treatment.

    No full text
    <p>AIC values indicated the best-fitting model included effects of period, habitat, and location, but not treatment.</p

    Comparison of alternative models for abundance of arthropods in bulk samples taken pre-treatment and 1 week post-treatment.

    No full text
    <p>The best fitting model included as predictors period, habitat, and location, but not treatment.</p

    The tick biocontrol agent <i>Metarhizium brunneum</i> (= <i>M</i>. <i>anisopliae</i>) (strain F52) does not reduce non-target arthropods - Fig 1

    No full text
    <p><b>Before-After-Control-Impact (BACI) effects for bulk samples (A) and pitfall samples (B).</b> For bulk samples, BACI effects were based on samples taken pre-treatment and 1 week post-treatment (A, top panel) and based on samples taken pre-treatment and 3 weeks post-treatment (A, bottom panel). For pitfall samples, BACI effects were based on samples taken pre-treatment and 1 week-post treatment (B, top panel), and pre-treatment and 5 weeks post-treatment (B, bottom panel). For arthropod order <i>j</i>, the BACI effect is: (<i>μ</i><sub><i>j</i>,<i>p = after</i>, <i>t = Met52</i></sub> - <i>μ</i><sub><i>j</i>,<i>p = after</i>, <i>t = H2O</i></sub>)—(<i>μ</i><sub><i>j</i>,<i>p = before</i>, <i>t = Met52</i></sub> - <i>μ</i><sub><i>j</i>,<i>p = before</i>, <i>t = H2O</i></sub>). Standard errors were computed from BACI effects observed for order <i>j</i> at each location and habitat. Values are plotted on an inverse hyperbolic sine scale. Above the BACI for each order is the mean abundance for that order across all period-treatment categories for that sample type (bulk vs. pitfall).</p
    corecore