1,386 research outputs found

    Unusual Flaring Activity in the Blazar PKS 1424-418 during 2008-2011

    Full text link
    Context. Blazars are a subset of active galactic nuclei (AGN) with jets that are oriented along our line of sight. Variability and spectral energy distribution (SED) studies are crucial tools for understanding the physical processes responsible for observed AGN emission. Aims. We report peculiar behaviour in the bright gamma-ray blazar PKS 1424-418 and use its strong variability to reveal information about the particle acceleration and interactions in the jet. Methods. Correlation analysis of the extensive optical coverage by the ATOM telescope and nearly continuous gamma-ray coverage by the Fermi Large Area Telescope is combined with broadband, time-dependent modeling of the SED incorporating supplemental information from radio and X-ray observations of this blazar. Results. We analyse in detail four bright phases at optical-GeV energies. These flares of PKS 1424-418 show high correlation between these energy ranges, with the exception of one large optical flare that coincides with relatively low gamma-ray activity. Although the optical/gamma-ray behaviour of PKS 1424-418 shows variety, the multiwavelength modeling indicates that these differences can largely be explained by changes in the flux and energy spectrum of the electrons in the jet that are radiating. We find that for all flares the SED is adequately represented by a leptonic model that includes inverse Compton emission from external radiation fields with similar parameters. Conclusions. Detailed studies of individual blazars like PKS 1424-418 during periods of enhanced activity in different wavebands are helping us identify underlying patterns in the physical parameters in this class of AGN.Comment: accepted for publication in A&

    On leptonic models for blazars in the Fermi era

    Full text link
    Some questions raised by Fermi-LAT data about blazars are summarized, along with attempts at solutions within the context of leptonic models. These include both spectral and statistical questions, including the origin of the GeV breaks in low-synchrotron peaked blazars, the location of the gamma-ray emission sites, the correlations in the spectral energy distributions with luminosity, and the difficulty of synchrotron/SSC models to fit the spectra of some TeV blazars.Comment: 9 pages, 1 figure, in "Beamed and Unbeamed Gamma Rays from Galaxies," Muonio, Finland, 11-15 April, 2011, ed. R. Wagner, L. Maraschi, A. Sillanpaa, to appear in Journal of Physics: Conference Serie

    PKS 2123−463: a confirmed γ -ray blazar at high redshift

    Get PDF
    The flat spectrum radio quasar (FSRQ) PKS 2123−463 was associated in the first Fermi- Large Area Telescope (LAT) source catalogue with the Îł -ray source 1FGL J2126.1−4603, but when considering the full first two years of Fermi observations, no Îł -ray source at a position consistent with this FSRQ was detected, and thus PKS 2123−463 was not reported in the second Fermi-LAT source catalogue. On 2011 December 14 a Îł -ray source positionally consistent with PKS 2123−463 was detected in flaring activity by Fermi-LAT. This activity triggered radio-to-X-ray observations by the Swift, Gamma-ray Optical/Near-Infrared Detector (GROND), Australia Telescope Compact Array (ATCA), Ceduna and Seven Dishes Karoo Array Telescope (KAT-7) observatories. Results of the localization of the Îł -ray source over 41 months of Fermi-LAT operation are reported here in conjunction with the results of the analysis of radio, optical, ultraviolet (UV) and X-ray data collected soon after the Îł -ray flare. The strict spatial association with the lower energy counterpart together with a simultaneous increase of the activity in optical, UV, X-ray and Îł -ray bands led to a firm identification of the Îł -ray source with PKS 2123−463. A new photometric redshift has been estimated as z = 1.46 ± 0.05 using GROND and Swift Ultraviolet/Optical Telescope (UVOT) observations, in rough agreement with the disputed spectroscopic redshift of z = 1.67.We fit the broad-band spectral energy distribution with a synchrotron/external Compton model. We find that a thermal disc component is necessary to explain the optical/UV emission detected by Swift/UVOT. This disc has a luminosity of∌1.8×1046 erg s−1, and a fit to the disc emission assuming a Schwarzschild (i.e. non-rotating) black hole gives a mass of ∌2 × 109Mʘ. This is the first black hole mass estimate for this source

    Fermi Gamma-ray Space Telescope Observations of Recent Gamma-ray Outbursts from 3C 454.3

    Full text link
    The flat spectrum radio quasar 3C~454.3 underwent an extraordinary outburst in December 2009 when it became the brightest gamma-ray source in the sky for over one week. Its daily flux measured with the Fermi Large Area Telescope at photon energies E>100 MeV reached F = 22+/-1 x 10^-6 ph cm^-2 s^-1, representing the highest daily flux of any blazar ever recorded in high-energy gamma-rays. It again became the brightest source in the sky in 2010 April, triggering a pointed-mode observation by Fermi. The correlated gamma-ray temporal and spectral properties during these exceptional events are presented and discussed. The main results show flux variability over time scales less than 3 h and very mild spectral variability with an indication of gradual hardening preceding major flares. No consistent loop pattern emerged in the gamma-ray spectral index vs flux plane. A minimum Doppler factor of ~ 15 is derived, and the maximum energy of a photon from 3C 454.3 is ~ 20 GeV. The spectral break at a few GeV is inconsistent with Klein-Nishina softening from power-law electrons scattering Ly_alpha line radiation, and a break in the underlying electron spectrum in blazar leptonic models is implied.Comment: submitted to the Astrophysical Journa

    The characterization of the distant blazar GB6 J1239+0443 from flaring and low activity periods

    Get PDF
    In 2008 AGILE and Fermi detected gamma-ray flaring activity from the unidentified EGRET source 3EG J1236+0457, recently associated with a flat spectrum radio quasar GB6 J1239+0443 at z=1.762. The optical counterpart of the gamma-ray source underwent a flux enhancement of a factor 15-30 in 6 years, and of ~10 in six months. We interpret this flare-up in terms of a transition from an accretion-disk dominated emission to a synchrotron-jet dominated one. We analysed a Sloan Digital Sky Survey (SDSS) archival optical spectrum taken during a period of low radio and optical activity of the source. We estimated the mass of the central black hole using the width of the CIV emission line. In our work, we have also investigated SDSS archival optical photometric data and UV GALEX observations to estimate the thermal-disk emission contribution of GB6 J1239+0443. Our analysis of the gamma-ray data taken during the flaring episodes indicates a flat gamma-ray spectrum, with an extension of up to 15 GeV, with no statistically-relevant sign of absorption from the broad line region, suggesting that the blazar-zone is located beyond the broad line region. This result is confirmed by the modeling of the broad-band spectral energy distribution (well constrained by the available multiwavelength data) of the flaring activity periods and by the accretion disk luminosity and black hole mass estimated by us using archival data.Comment: 30 pages, 7 figures, 4 tables MNRAS Accepted on 2012 June 1

    Fermi Large Area Telescope Gamma-Ray Detection of the Radio Galaxy M87

    Full text link
    We report the Fermi-LAT discovery of high-energy (MeV/GeV) gamma-ray emission positionally consistent with the center of the radio galaxy M87, at a source significance of over 10 sigma in ten-months of all-sky survey data. Following the detections of Cen A and Per A, this makes M87 the third radio galaxy seen with the LAT. The faint point-like gamma-ray source has a >100 MeV flux of 2.45 (+/- 0.63) x 10^-8 ph cm^-2 s^-1 (photon index = 2.26 +/- 0.13) with no significant variability detected within the LAT observation. This flux is comparable with the previous EGRET upper limit (< 2.18 x 10^-8 ph cm^-2 s^-1, 2 sigma), thus there is no evidence for a significant MeV/GeV flare on decade timescales. Contemporaneous Chandra and VLBA data indicate low activity in the unresolved X-ray and radio core relative to previous observations, suggesting M87 is in a quiescent overall level over the first year of Fermi-LAT observations. The LAT gamma-ray spectrum is modeled as synchrotron self-Compton (SSC) emission from the electron population producing the radio-to-X-ray emission in the core. The resultant SSC spectrum extrapolates smoothly from the LAT band to the historical-minimum TeV emission. Alternative models for the core and possible contributions from the kiloparsec-scale jet in M87 are considered, and can not be excluded.Comment: ApJ, accepted, 6 pages, 4 figures. Corresponding authors: C.C. Cheung, W. McConvill

    PKS 2123-463: A Confirmed Gamma-ray Blazar at High Redshift

    Get PDF
    The flat spectrum radio quasar (FSRQ) PKS 2123463 was associated in the First Fermi-LAT source catalog with the gamma-ray source 1FGL J2126.14603, but when considering the full first two years of Fermi observations, no gamma-ray source at a position consistent with this FSRQ was detected, and thus PKS 2123463 was not reported in the Second Fermi-LAT source catalog. On 2011 December 14 a gamma-ray source positionally consistent with PKS 2123463 was detected in flaring activity by Fermi-LAT. This activity triggered radio-to-X-ray observations by the Swift, GROND, ATCA, Ceduna, and KAT-7 observatories. Results of the localization of the gamma-ray source over 41 months of Fermi-LAT operation are reported here in conjunction with the results of the analysis of radio, optical, UV and X-ray data collected soon after the gamma-ray flare. The strict spatial association with the lower energy counterpart together with a simultaneous increase of the activity in optical, UV, X-ray and gamma-ray bands led to a firm identification of the gamma-ray source with PKS 2123463. A new photometric redshift has been estimated as z = 1.46 +/- 0.05 using GROND and Swift/UVOT observations, in rough agreement with the disputed spectroscopic redshift of z = 1.67. We fit the broadband spectral energy distribution with a synchrotron/external Compton model. We find that a thermal disk component is necessary to explain the optical/UV emis- sion detected by Swift/UVOT. This disk has a luminosity of 1.8x1046 erg s1, and a fit to the disk emission assuming a Schwarzschild (i.e., nonrotating) black hole gives a mass of 2 x 109 M(solar mass). This is the first black hole mass estimate for this source
    • 

    corecore