115 research outputs found

    In-situ Microwave Brightness Temperature Variability from Ground-based Radiometer Measurements at Dome C in Antarctica Induced by Wind-formed Features

    Get PDF
    Space-borne microwave radiometers are among the most useful tools to study snow and to collect information on the Antarctic climate. They have several advantages over other remote sensing techniques: high sensitivity to snow properties of interest (temperature, grain size, density), subdaily coverage in the polar regions, and their observations are independent of cloud conditions and solar illumination. Thus, microwave radiometers are widely used to retrieve information over snow-covered regions. For the Antarctic Plateau, many studies presenting retrieval algorithms or numerical simulations have assumed, explicitly or not, that the subpixel-scale heterogeneity is negligible and that the retrieved properties were representative of whole pixels. In this presentation, we investigate the spatial variations of brightness temperature over arange of a few kilometers in the Dome C area (Antarctic Plateau)

    Simulation of the Microwave Emission of Multi-layered Snowpacks Using the Dense Media Radiative Transfer Theory: the DMRT-ML Model

    Get PDF
    DMRT-ML is a physically based numerical model designed to compute the thermal microwave emission of a given snowpack. Its main application is the simulation of brightness temperatures at frequencies in the range 1-200 GHz similar to those acquired routinely by spacebased microwave radiometers. The model is based on the Dense Media Radiative Transfer (DMRT) theory for the computation of the snow scattering and extinction coefficients and on the Discrete Ordinate Method (DISORT) to numerically solve the radiative transfer equation. The snowpack is modeled as a stack of multiple horizontal snow layers and an optional underlying interface representing the soil or the bottom ice. The model handles both dry and wet snow conditions. Such a general design allows the model to account for a wide range of snow conditions. Hitherto, the model has been used to simulate the thermal emission of the deep firn on ice sheets, shallow snowpacks overlying soil in Arctic and Alpine regions, and overlying ice on the large icesheet margins and glaciers. DMRT-ML has thus been validated in three very different conditions: Antarctica, Barnes Ice Cap (Canada) and Canadian tundra. It has been recently used in conjunction with inverse methods to retrieve snow grain size from remote sensing data. The model is written in Fortran90 and available to the snow remote sensing community as an open-source software. A convenient user interface is provided in Python

    Power saturation in standard and double-AR unfolded laser diode cavities

    Get PDF
    We report modeling and experimental results that demonstrate mechanisms limiting the output power of broad area semiconductor lasers. The modeling comprises numerical simulations of the laser cavity with evolution of non-uniform carrier density, photon density, temperature and index. We measure unfolded laser cavities to validate simulation methods and input parameters. © 2016 IEICE-ES

    Pressure is not a state function for generic active fluids

    Get PDF
    Pressure is the mechanical force per unit area that a confined system exerts on its container. In thermal equilibrium, it depends only on bulk properties (density, temperature, etc.) through an equation of state. Here we show that in a wide class of active systems the pressure depends on the precise interactions between the active particles and the confining walls. In general, therefore, active fluids have no equation of state, their mechanical pressures exhibit anomalous properties that defy the familiar thermodynamic reasoning that holds in equilibrium. The pressure remains a function of state, however, in some specific and well-studied active models that tacitly restrict the character of the particle-wall and/or particle-particle interactions.Comment: 8 pages + 9 SI pages, Nature Physics (2015

    A new method to analyse the pace of child development: Cox regression validated by a bootstrap resampling procedure

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Various perinatal factors influencing neuromotor development are known from cross sectional studies. Factors influencing the age at which distinct abilities are acquired are uncertain. We hypothesized that the Cox regression model might identify these factors.</p> <p>Methods</p> <p>Neonates treated at Aachen University Hospital in 2000/2001 were identified retrospectively (n = 796). Outcome data, based on a structured interview, were available from 466 children, as were perinatal data. Factors possibly related to outcome were identified by bootstrap selection and then included into a multivariate Cox regression model. To evaluate if the parental assessment might change with the time elapsed since birth we studied five age cohorts of 163 normally developed children.</p> <p>Results</p> <p>Birth weight, gestational age, congenital cardiac disease and periventricular leukomalacia were related to outcome in the multivariate analysis (p < 0.05). Analysis of the control cohorts revealed that the parents' assessment of the ability of bladder control is modified by the time elapsed since birth.</p> <p>Conclusions</p> <p>Combined application of the bootstrap resampling procedure and multivariate Cox regression analysis effectively identifies perinatal factors influencing the age at which distinct abilities are acquired. These were similar as known from previous cross sectional studies. Retrospective data acquistion may lead to a bias because the parental memories change with time. This recommends applying this statistical approach in larger prospective trials.</p

    Cell division and death inhibit glassy behaviour of confluent tissues

    Get PDF
    We investigate the effects of cell division and apopotosis on collective dynamics in two-dimensional epithelial tissues. Our model includes three key ingredients observed across many epithelia, namely cell-cell adhesion, cell death and a cell division process that depends on the surrounding environment. We show a rich non-equilibrium phase diagram depending on the ratio of cell death to cell division and on the adhesion strength. For large apopotosis rates, cells die out and the tissue disintegrates. As the death rate decreases, however, we show, consecutively, the existence of a gas-like phase, a gel-like phase, and a dense confluent (tissue) phase. Most striking is the observation that the tissue is self-melting through its own internal activity, ruling out the existence of any glassy phase.Comment: 9 pages, 10 figure

    The prevalence of triggers in paediatric migraine: a questionnaire study in 102 children and adolescents

    Get PDF
    The prevalence and characterization of migraine triggers have not been rigorously studied in children and adolescents. Using a questionnaire, we retrospectively studied the prevalence of 15 predefined trigger factors in a clinic-based population. In 102 children and adolescents fulfilling the Second Edition of The International Headache Classification criteria for paediatric migraine, at least one migraine trigger was reported by the patient and/or was the parents’ interpretation in 100% of patients. The mean number of migraine triggers reported per subject was 7. Mean time elapsed between exposure to a trigger factor and attack onset was comprised between 0 and 3 h in 88 patients (86%). The most common individual trigger was stress (75.5% of patients), followed by lack of sleep (69.6%), warm climate (68.6%) and video games (64.7%). Stress was also the most frequently reported migraine trigger always associated with attacks (24.5%). In conclusion, trigger factors were frequently reported by children and adolescents with migraine and stress was the most frequent

    Land Surface Temperature from Ka-band (37 GHZ) Passive Microwave Observations

    Get PDF
    An alternative to thermal infrared satellite sensors for measuring land surface temperature (T<inf>s</inf>) is presented. The 37 GHz vertical polarized brightness temperature is used to derive T<inf>s</inf> because it is considered the most appropriate microwave frequency for temperature retrieval. This channel balances a reduced sensitivity to soil surface characteristics with a relatively high atmospheric transmissivity. It is shown that with a simple linear relationship, accurate values for T<inf>s</inf> can be obtained from this frequency, with a theoretical bias of within 1 K for 70% of vegetated land areas of the globe. Barren, sparsely vegetated, and open shrublands cannot be accurately described with this single channel approach because variable surface conditions become important. The precision of the retrieved land surface temperature is expected to be better than 2.5 K for forests and 3.5 K for low vegetation. This method can be used to complement existing infrared derived temperature products, especially during clouded conditions. With several microwave radiometers currently in orbit, this method can be used to observe the diurnal temperature cycles with surprising accuracy. © 2009 by the American Geophysical Union

    Parent-Completed Developmental Screening in Premature Children: A Valid Tool for Follow-Up Programs

    Get PDF
    Our goals were to (1) validate the parental Ages and Stages Questionnaires (ASQ) as a screening tool for psychomotor development among a cohort of ex-premature infants reaching 2 years, and (2) analyse the influence of parental socio-economic status and maternal education on the efficacy of the questionnaire. A regional population of 703 very preterm infants (<35 weeks gestational age) born between 2003 and 2006 were evaluated at 2 years by their parents who completed the ASQ, by a pediatric clinical examination, and by the revised Brunet Lezine psychometric test with establishment of a DQ score. Detailed information regarding parental socio-economic status was available for 419 infants. At 2 years corrected age, 630 infants (89.6%) had an optimal neuromotor examination. Overall ASQ scores for predicting a DQ score ≤85 produced an area under the receiver operator curve value of 0.85 (95% Confidence Interval:0.82–0.87). An ASQ cut-off score of ≤220 had optimal discriminatory power for identifying a DQ score ≤85 with a sensitivity of 0.85 (95%CI:0.75–0.91), a specificity of 0.72 (95%CI:0.69–0.75), a positive likelihood ratio of 3, and a negative likelihood ratio of 0.21. The median value for ASQ was not significantly associated with socio-economic level or maternal education. ASQ is an easy and reliable tool regardless of the socio-economic status of the family to predict normal neurologic outcome in ex-premature infants at 2 years of age. ASQ may be beneficial with a low-cost impact to some follow-up programs, and helps to establish a genuine sense of parental involvement

    A circle swimmer at low Reynolds number

    Full text link
    Swimming in circles occurs in a variety of situations at low Reynolds number. Here we propose a simple model for a swimmer that undergoes circular motion, generalising the model of a linear swimmer proposed by Najafi and Golestanian (Phys. Rev. E 69, 062901 (2004)). Our model consists of three solid spheres arranged in a triangular configuration, joined by two links of time-dependent length. For small strokes, we discuss the motion of the swimmer as a function of the separation angle between its links. We find that swimmers describe either clockwise or anticlockwise circular motion depending on the tilting angle in a non-trivial manner. The symmetry of the swimmer leads to a quadrupolar decay of the far flow field. We discuss the potential extensions and experimental realisation of our model.Comment: 9 pages, 9 Figure
    corecore