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We investigate the effects of cell division and apopotosis on collective dynamics in two-dimensional epithelial
tissues. Our model includes three key ingredients observed across many epithelia, namely cell-cell adhesion,
cell death and a cell division process that depends on the surrounding environment. We show a rich non-
equilibrium phase diagram depending on the ratio of cell death to cell division and on the adhesion strength. For
large apopotosis rates, cells die out and the tissue disintegrates. As the death rate decreases, however, we show,
consecutively, the existence of a gas-like phase, a gel-like phase, and a dense confluent (tissue) phase. Most
striking is the observation that the tissue is self-melting through its own internal activity, ruling out the existence
of any glassy phase.

Simple epithelial tissues consist of a single layer of tightly
connected cells. Especially during development, epithelial
cells grow, divide and move, leading to a dynamic reorganisa-
tion of the entire tissue. This process is regulated by a com-
plex set of chemical and mechanical signalling pathways [1–
4] that control cell shapes and cell-cell contacts. How the
regulation of cell-cell interactions is transmitted to the tissue-
level organisation is still a topic of active research. Mechan-
ical signalling, i.e., a set of processes that control the cell re-
sponse to mechanical stimuli in the form of externally applied
or internally generated forces, is at present only partly under-
stood [2]. One well-known example of mechanics-influenced
regulation is the density-dependent inhibition of proliferation
in cell monolayers [5, 6]. A hallmark of cancerous tissues is
the absence of this regulation, leading to uncontrolled tumour
growth. Perturbations in the mechanical sensing of cells have
been reported to be relevant in several diseases such as osteo-
porosis and atherosclerosis [7]. Breast cancer [8], cardiovas-
cular [9] and liver diseases [10] as well as renal glomerular
disease [11] are all known to be accompanied by significant
changes in the mechanical properties of relevant tissues.

Recent advances in microscopy techniques and powerful al-
gorithms for automated cell tracking have enabled studies of
collective cell migration for large cell numbers, over extended
periods of time and with high spatial resolution, both in vitro
and in vivo. Traction force microscopy [12] measurements
revealed that the collective motion of epithelial cell layers is
far more complex than previously believed [13–15]. Homo-
geneous cell sheets behave as a supercooled fluid at long time
scales and as a glass at short time scales, showing large spa-
tial fluctuations of the inter-cellular forces. These fluctuations
cannot be pinpointed to a specific cell but extend over regions
spanning several cells [16–18]. They strongly resemble the
fluctuations observed in supercooled colloidal and molecular
liquids approaching the glass transition [13] with evidence of
dynamical heterogeneity, a hallmark of glassy dynamics that
has been extensively studied in soft condensed matter physics.

In spite of the many interesting similarities to soft glasses,
cell sheets viewed as active materials constitute a new class

of non-equilibrium system in which the interplay between ac-
tivity, long range elasticity and cell interactions give rise to
novel phases with unusual structural, dynamical and mechan-
ical properties [19–21]. Many recent works have shown that
cell activity, for example in the form of self-propulsion, has
the capability to fluidise a confluent tissue, but only above a
critical level of activity [20–23]. At low enough activity all of
these works report the existence of a glassy phase where cell
diffusion ceases.

In contrast, in this paper we show that the simple presence
of any finite rate of cell division and death completely de-
stroys the glassy dynamics of the tissue. In agreement with
Ranft et al. [24], we report that cell division and apopotosis
always fluidises the confluent tissue. To systematically ex-
plore the effect of cell division and cell death as an active
driver, we introduce a minimal particle-based model based
on simplified cell and division dynamics. This allows us to
fully explore the phase space of the model and enumerate its
phases, from gaseous to gel-like and eventually confluent, as
a function of the relative death to division ratio (Figure 2). We
carefully characterise the lower-density transitions (absorbing
to gaseous, phase separated to gel-like) to produce a phase
diagram (Figure 5). In the confluent phase, we show the self-
melting effect of a range of division and death rates, and their
scaling limits (Figure 6). Finally, we compare division and
death dynamics to active self-propulsion dynamics and show
that at the long time scales relevant to glassy dynamics, the
effect of division always dominates (Figure 7).

MODEL

Cell shape is known to play an important role in tissue or-
ganisation, and it is controlled by a complex set of signalling
pathways [25]. Despite its complexity, a remarkable amount
of information about collective behaviour at scales exceeding
the size of a single cell can be gained from effective models
that treat cells as soft elastic objects [26]. More generally,
particle based tissue models have been successfully applied to
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a wide range of systems (for a complete review see Drasdo
et al. and the references within [27]). In this study we take
a similar approach and consider a model where the cells are
represented by soft spheres of radius bi. The tissue consists
of a collection of N such spheres with radii bi uniformly dis-
tributed in the range of 0.85 to 1.15.

(a) (b)

division

death

FIG. 1. (a) Interparticle potential V (r), for k = 1 and ε = 0.2. The
elastic force is shown as inset. (b) Schematic illustration of the cell
division and cell death dynamics.

We model the contact forces between two cells i and j
through a pair potential that includes short range repulsion to
mimic volume exclusion, together with short range adhesion
(see Figure 1(a)) [16, 27]. The potential is given by

V (ri j) =


1
2 kb2

i j

[(
ri j
bi j
−1
)2
− ε2

]
if ri j

bi j
−1≤ ε

− 1
2 kb2

i j

(
ri j
bi j
−1−2ε

)2
if ε <

ri j
bi j
−1≤ 2ε,

(1)
where k is the stiffness constant, bi j = bi +b j is the sum of
the particle radii, and (bi jε) is the adhesive force strength.

In accordance with micron-size scales for cell diameters,
we neglect inertia effects and model the dynamics of the cell
positions ri(t) as fully overdamped [28]

∂tri(t) = µFi, (2)

where µ is the inverse friction coefficient and Fi = ∑ j 6=i Fi j is
the total force acting on particle i exerted by its neighbours.

The only source of activity in the system is cell division and
apoptosis, as schematically drawn in Figure 1(b). Apoptosis is
included by removing cells randomly at constant rate a. Note
that this simplified approach can also model other removal
mechanisms, such as sheet extrusion or ingression from the
sheet into other tissues. Motivated by the well-known density-
dependent inhibition of proliferation in cell monolayers [5,
6], we model cell division as a density dependent mechanism
with a division rate

d = d0

(
1− z

zmax

)
, (3)

where d0 is the division rate amplitude, z is the number of
contact neighbours of the particle and zmax is number of con-
tact neighbours at which division ceases in the system. We
fix the maximum value of nearest neighbours to zmax = 6, i.e.
a full ring of nearest neighbours. Taking rearrangements into
account, this allows for the neighbour distribution with mean
6 typical of a two-dimensional confluent tissue [29, 30], see
Figure 1(b). We replace the cell by the new mother-daughter
pair located on top of each other, and then linearly fade in
their mutual potential Vi j, therefore preventing jumps in the
local forces.

Our model contains two microscopic time scales: the elas-
tic interaction time scale τel = (µk)−1 and a much longer time
scale introduced by the active division process τa = (d0)

−1.
We fix the simulation time unit by setting µ = k = 1. Then
the phase space can be explored varying only three control
parameters: (1) the ratio of apoptosis to division rate, a/d0,
(2) the ratio of attraction to repulsion ε . (3) Furthermore, we
have established that the homeostatic properties of the system
(density, pressure, contact number) do not depend on d0 (see
SI, section A). We study the dynamics of the model in a
square box of size L = 120 with periodic boundary conditions
to mimic the bulk dynamics of the tissue. Depending on final
density, this is equivalent to N = 2000−10000 particles. The
simulations were carried out using both a C++ GPU-parallel
Molecular Dynamics code (see SI, section D), and the
multi-purpose active matter simulation code SAMoS (Soft
Active Matter on Surfaces) [31].

RESULTS AND DISCUSSION

To study the interplay between activity and adhesion, we
explore the phase space of a/d0 and ε .

We monitor the state of the system by following the packing
fraction Φ = ∑i πb2

i /L2, the number of contact neighbours Zng
and the virial pressure P = ∑i ri ·Fi/2V . The corresponding
results are shown in Figures 3 and 4.

At high apoptosis rates a/d0 . 1, the system is unable to
reach a steady state at non-zero density, i.e. the colony dies
out. We find an ε-dependent critical a/d0 where the cell divi-
sion is first able to balance cell death and the system reaches a
gas-like state (Fig. 2(a)). Since all of the values are below the
expected threshold of stability, a/d0 = 1, it is clear that col-
lective effects play a role. In the steady state, the rate of loss
of particles and the actual division rate balance each other,
i.e. 〈d〉 = a, where the average takes local correlations into
account. Intuitively, we can derive the following mean-field
scaling for the contact number,

zMF = zmax(1−a/d0). (4)

As shown in the inset to Fig. 3, the z− a/d0 curves for all ε

collapse, and deviations from the linear scaling occur only at
the lowest a/d0.
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v (log)P

-1.2 1.2

FIG. 2. Snapshots of the system in different parts of the phase space for ε = 0.15. (a) Gas-like phase at apoptosis rate just within the
stable region (a/d0 = 0.5, d0 = 10−2); (b) phase separated state consisting of a percolated cluster surrounded by a gas of cells (a/d0 = 0.3,
d0 = 10−2); (c) self-melting dynamics in a confluent system (a/d0 = 3×10−3, d0 = 3×10−3). Particles are coloured according to: (a) contact
number, (b) local virial pressure and (c) velocity magnitude (log scale). Note that the tracer particles used for the mean-square displacement
and self-intermediate function calculation are shown in blue.

FIG. 3. Packing fraction Φ and mean contact number Zng (inset)
as a function of the ratio of apoptosis to division rate, a/d0. The
mean field line, zMF = zmax(1−a/d0), is indicated by red dashed
lines. Different symbols and colours (online) correspond to different
attraction forces ε . For this figure we used d0 = 10−2.

What sets the critical a/d0 value remains an open question.
If we extend the mean-field argument to the mean density,
ΦMF = Φmax(1−a/d0), where Φmax is the packing fraction
of a system with 〈z〉 = zmax, we obtain a linear scaling that is
consistent with much of the intermediate a/d0 range. How-
ever, this argument overestimates Φ when ε is increased.

Clustering is observed at ε = 0 in the absence of any ad-
hesion force, simply due to the fact that cell divisions create

FIG. 4. Virial pressure P as function of the ratio of apoptosis to
division rate, a/d0. The negative pressure region is indicative of a
gel-like phase and the inset shows the minimum pressure, Pmin for
different values of ε . The line is a guide for the eye. Symbols and
colours are the same as in Fig. 3.

new cells nearby [32]. Spatial heterogeneities lower the ef-
fective division rate since the typical number of neighbours
increases, and hence the critical apoptosis rate also decreases.
As we increase the adhesion force, we observe even stronger
spatial heterogeneities and so the effective local division rate
decreases more strongly, due to the contact number in the clus-
ters reaching zmax. We predict a decrease of the critical a/d0
with ε , consistent with the numerical results in Fig. 5. The
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Self-Melting

Gas

Phase-Separated

FIG. 5. Phase diagram of the system as a function of the adhesion
force characterised by ε and the activity characterised by a/d0. The
red line represent the (numerically estimated) first passage line be-
tween an absorbing state and the clustering gas phase. The blue line
corresponds to the percolation transition in the system which sepa-
rates the gas from the percolating cluster phase and the liquid. Fi-
nally, the orange line denotes the cluster-liquid transition. The color
map shows the value of the packing fraction, Φ.

actual lowest achievable a/d0 is in fact set by a first passage
problem: no colony can recover once all cells have died. It
is important to note that the finite size has a crucial effect in
this situation. Further work is needed to explore this effect in
more detail (see SI, section B).

In addition, decreasing a/d0 from its critical value causes
a rapid increase in the density, leading to a gel-like per-
colated structure (Fig. 2(b)). Using standard percolation
tools [33, 34], we construct the blue transition line in Fig. 5.
The nature of the percolation transition will be studied in fu-
ture work [35]. Depending on the strength of the adhesion
force ε , the final confluent tissue state, Fig. 2(c) is reached
either directly or through phase separation mechanism where
a gel-like structure appears in the system. In section we dis-
cuss the self-melting phase in more detail, and the gel phase in
section . Additionally, for large attraction ε > 0.2, the central
soft core repulsion can be overcome, and the system aggre-
gates into an unphysical series of clumps.

We have constructed the (ε,a/d0) phase diagram shown in
Fig. 5 using the results discussed above, together with the
methods described in the followings subsections.

Self-melting confluent tissue

The key result here concerns the confluent tissue, where
we observe a very slow dynamics, which is nevertheless flu-
idised by the presence of dividing and dying particles. We
illustrate the dynamics of this state in Fig. 2(c), where par-

ticles are colour-coded by their velocity magnitude. Each
individual death or division event is responsible for a dis-
placement wave that propagates diffusively, and that, together
with other events, leads to rearrangements in the system and
eventually to a finite diffusive motion of cells. This dynam-
ics leads to a liquid state at all values of the activity quanti-
fied by d0 and a. We measure the mean-square displacement
MSD(t) = 〈|r(t)− r(0)|2〉 through the addition of 2% of in-
active but otherwise identical tracer particles (blue particles in
Fig. 2(c)). Figure 6(a) shows a typical set of MSD curves.
We observe a ballistic scaling at short times and very small
displacements, characteristic of the persistent motion due to
individual division or death events and thus dependent on the
internal relaxation dynamics characterised by the surface fric-
tion 1/µ and the elastic stiffness k of individual cells (see sec-
tion C of the SI). The strain field caused by this events cor-
responds to classical long range elasticity [36] as a response
to the changes in local structure. Signatures of this elastic re-
sponse can be seen in the velocity field in Fig. 2(c). In the
long time limit at times longer than a characteristic time τ , the
dynamics become diffusive. From the long-time behaviour
of the tracer motion we define a diffusion coefficient D from
MSD(t) = 4Dt. In addition, Fig. 6(c) shows the scaled diffu-
sion coefficient D/d0 as a function of the division/death ratio
a/d0. As can be seen, the curves collapse consistently with
a linear scaling D/d0 ∼ a/d0, with some deviations for the
largest values of the activity a/d0. This last result is in ac-
cordance with the theoretical description presented by Ranft
et al. [24].

To better understand how cells decorrelate their positions
in time, we compute the self-intermediate scattering function
F(t) = 1

N 〈∑N
n=1 eiq·(rn(t)−rn(0))〉t , for a value of |q| =

√
2π/σ .

As in ordinary liquids and unlike in glassy or supercooled sys-
tems, we find a single decay time scale, as shown in Fig. 6(d).
We fit the decorrelation time τ at which F(t) has decayed
by half. As shown in panel (f), we observe a simple scal-
ing collapse, τd0 ∼ (a/d0)

−1 as a very good approximation,
with again deviations at the largest a/d0. In panel (e), we have
rescaled time by the effective inverse time scale (a/d0)d0 = a,
i.e. the apoptosis rate. We observe collapse of the curves, and
the same holds for the MSD curves (panel (b)). This means
that the only relevant time scale for fluidisation is the division
time scale proportional to 1/a in the stationary state.

To emphasise the relevance of the fluidisation time scale τ ,
we have added individual motility to the particles. We use a
standard form of active dynamics [37], a non-aligning active
force term Fact = v0n̂, where the unit vector n̂ diffuses with ro-
tational diffusion coefficient Dr. It has been shown that in the
absence of division or death, this dynamics leads to a glassy
phase at sufficiently high density and low v0 [20, 22]. For
high values of Dr, the system can be mapped to a thermal
system with effective temperature Teff = v2

0/2Dr and mostly
analogous glassy dynamics [38]. Here we consider the case
of Dr = 1, which fits into this regime. In Fig. 7 we com-
pare the system with only active motion (panels (b) and (d))
to a system with both active motion and a very small rate of
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FIG. 6. Diffusive dynamics in the dense system. (a) Mean-square displacement for bare division rate d0 = 0.003 and a range of a/d0. (b)
Rescaling with 1/a time scale. (c) Scaling of the diffusion coefficient extracted from (a). (d) Self-Intermediate scattering function F(t) for the
same parameters as (a). (e) Rescaling with 1/a time scale. (f) Scaling of the fluidization time scale τ extracted from (b).

division and death (panels (a) and (c)).

In the system with only active driving, we see a clear tran-
sition through the active glass transition as a function of v0.
The MSD (panel (b)) shows an indefinite plateau at low v0
which then increases quadratically with v0, until it reaches the
cage breaking threshold. Panel (d) shows the self-intermediate
scattering function characterising the decorrelation of cell po-
sitions. As expected for a system with glassy dynamics, F(t)
does not decay significantly for the low v0 systems, but decays
at increasingly shorter time scales for larger v0. The actual
shape of F(t) exhibits a stretched exponential decay visible
over the whole time range. This is likely due to the active na-
ture of the dynamics, and the known effects of d = 2 on the
detailed phenomenology of the glass transition [39].

If we now add a small amount of cell division dynamics
(d0 = 3× 10−3 and a/d0 = 3× 10−3), we observe that the
active dynamics of the system is fully dominated by cell di-
vision/apoptosis events. This leads to a complete decorrela-
tion of the positions, i.e. a fluidised tissue (panel (c)), and
purely diffusive dynamics of the MSD beyond the ballistic
time scale (panel (a)). The decay of the intermediate structure
factor F(t) (panel (c)) for dynamics with cell division is un-
affected only for the largest v0, with a decay that is otherwise
truncated by the rapid decay of the dividing contribution. In
the same way, only the MSD for the largest v0 that was already
diffusive without the division is unaffected. The curves at low
v0 essentially collapse on top of the division-only curve. This
remarkable results demonstrate that at long time scales, the
division dynamic dominates for low values of the driving v0,
therefore erasing any signatures of the glassy state.

Gel phase

In the intermediate activity rate region, above the perco-
lation point, we observe either a confluent tissue, or a phase
separated system with strong density heterogeneities. This gel
phase is absent at low adhesion strengths (ε ≤ 0.05) and dom-
inates at larger adhesion values. In order to quantify this gel
phase we analyse the coarse-grained density field [40]. First,
we discretise space into boxes of length ξb and define a dis-
crete density field ρ(r) for discrete positions r located at the
centre of the boxes

ρ(r) =
1

Vb
∑

i
θ(b−|r− ri|), (5)

where Vb = ξ 2
b is the elementary volume, θ(x) is the Heaviside

function and b = 〈bi〉 is the mean particle radius. The coarse
grained density field ρ̄(r) is smoothed over adjacent boxes:

ρ̄(r) =
1
6

[
2ρ(r)+∑

±
∑

α=x,y
ρ(r±b eα)

]
, (6)

where eα is the unit vector in the α direction. As in Testard
et al. [40] we set ξb = 0.5b.

In Fig. 8, we show typical density fields for ε = 1.15 and
two a/d0 rates on both sides of the transition. As can be
seen from Fig. 8(a), for a/d0 = 0.2, the system is in a phase
coexistence state characterised by a strongly heterogeneous
coarse-grained density. On the other hand, for a very low
apoptosis rate a/d0 = 10−3 (Fig. 8(b)), the system is homo-
geneous. The probability distribution of the coarse-grained
density P(ρ̄) gives us a systematic method to distinguish be-
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tween the intermediate gel phase and the high density self-
melting confluent tissue phase. As can be seen in Fig. 8, in
the gel phase P(ρ̄) is characterised by two peaks reflecting
phase coexistence. One peak is located at almost zero density
representing the non-percolated phase (gas phase). A second
peak is at intermediate density representing the cluster phase
On the other hand, for the high density self-melting confluent
tissue the probability distribution of the coarse-grained den-
sity is represented by a single peak as expected. We used the
presence of a second peak to construct the Phase-separated -
Self-melting transition line showed in Fig. 5.

Interestingly, the formation of the gel is accompanied by the
build-up of a negative pressure in the system as demonstrated
in Fig. 4. The source of this negative pressure is that the per-
colated network structure may exhibit tensile stresses due to
the attractive forces when confined to a fixed volume. There-
fore, the measurement of a global quantity like the pressure
can already give some information on the underlying internal
structure.

(a) (b)

FIG. 8. Probability distribution corresponding to the coarse-grained
density field, Eq. (6) for ε = 1.15, d0 = 10−3 and a/d0 ratio equal to
(a) 2×10−1 and (b) 10−3.

CONCLUSIONS

In summary, using a simple model that includes only three
independent parameters, we have been able to explore active
dynamics relevant to tissues. As we increase the apoptosis
rate for a given adhesion force, we encounter, sequentially,
a dense confluent tissue phase, a network forming phase, a
low density clustering phase and a region where the tissue is
dying. We observe that in confluent tissues, regardless of the
level of active driving our model fluidises at long times, above
the division time scale. Signatures of active glassy dynamics
only exist at very short time scales, however they are already
severely affected by the division dynamics. We emphasise that
this behaviour is not solely a property of the model presented
here. For example, in an active vertex model simulation [31],
we have confirmed that adding cell division as only source of
activity also fluidises the tissue.

The absence of a glassy phase in a system with any level
of division or death events is important for the biology of tis-
sues. Our results suggests that in actual developmental ep-
ithelial tissues (e.g. drosophila, chick embryo and the mam-
malian cornea), where there is substantial division dynamics,
active glassy dynamics does not play a fundamental role. Only
in vitro systems that have suppressed division rates are more
likely candidates to show true glassy features. A number of
recent results [41, 42] predict a glassy phase in confluent tis-
sues, based on a shape parameter relating perimeter and area
of cells. However, the associated models [42, 43] all neglect
cell division and death.

In further studies it will be important to also consider other
biological processes that involve more complex collective pro-
cesses. During organ development or tumour growth, the
cells organise themselves in a collective manner by regulat-
ing proliferation rate (cell division) and cell death (apopto-
sis). Gene expression and tissue pattern formation can be
highly influenced by the spatial distribution of mechanical
stresses [44, 45].
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Supplementary Material for:

Cell division and death inhibit glassy behaviour of confluent tissues

A. INFLUENCE OF THE DIVISION RATE d0

We consider again our system where the only source of activity is cell division and apoptosis. Cell division is a density
dependent mechanism with division rate (Eq. 3 in the main text)

d = d0

(
1− z

zmax

)
.

We investigate the influence of the bare division rate d0 on the steady state of the system for two attractive force strengths ε = 0
and ε = 0.15. The results are shown in Fig. S1. As can be seen, the overall state of the system does not change significantly
with d0, except at very high d0 where the division time scale competes with the elastic time scale (see below).

(a) (b)

(d)(c)

FIG. S1. Influence of the bare division rate d0 on the packing fraction Φ (a-b) and mean contact number Zng (c-d) as a function of a/d0. Panel
(a-c) ε = 0 and (b-d) 0.15.
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B. FINIZE SIZE SCALING EFFECTS

We investigate how the system size influences the location of the gas - absorbed phase boundary line Φ = 0. We choose a
system at (a/d0 = 0.5,ε = 0.15), which is just within the gas phase for a very large system with L = 240. We then monitor the
evolution of the packing fraction Φ when we decrease the system size; the results are presented in Fig. S2. We observe that,
as expected, density fluctuations play a major role for small systems. For L < 25 the fluctuations of the packing fraction are
sufficient to remove all the cells, leading to the absorbing empty state in a first passage dynamics. Figure S3 shows the variance
of the packing fraction Var(Φ) as function of system size. As can be seen, for small system sizes the fluctuations are comparable
to Φ, making any colony die out. Further work is needed to explore this effect in more detail.

Φ
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FIG. S2. Influence of the system size on the packing fraction Φ for a/d0 = 0.5 and ε = 0.15.

C. INFLUENCE OF THE ELASTIC TIME SCALE

In the equations of motion ∂tri = µFi (Eq. 2 of the main text), the mobility µ sets the time scale of the diffusive dynamics
due to particle motion. Taking the form of the potential into account, mobility and elastic constant k form a single time scale
τel = 1/µk. Here, we investigate the influence of τel on the slow dynamics in the confluent phase.

We find a nuanced picture. At short time scales (MSD plot), the influence of τel is pronounced: for low values of µ , i.e. large
τel , the system takes a longer time to switch from ballistic to diffusive behaviour. This confirms that the relevant time scale in
the MSD is not set by the inverse division rate 1/a. The curves also do not rescale with a simple power of τel , pointing towards
a subtler interaction of elastic and division time scales for this crossover. At longer time scales, the relaxation time scale in the
Self-intermediate function is only slightly influenced by τel , with larger µ leading to a faster decay, but only by about a factor of
3 over more than two orders of magnitude of change in τel .

D. GPU-PARALLEL IMPLEMENTATION

Is well known that Molecular Dynamics (MD) simulation is a highly parallelizable numerical method; implementations of
MD are packages like for example LAMMPS, AMBER and GROMACS. Following these examples, we have built our own
parallel MD code on GPU (NVIDIA CUDA). In contrast to LAMMPS, for example, our in-house code is specifically designed
to introduce different sources of activity into the system (cell division, cell death and self propelled velocities). The general
workflow of the code is shown in algorithm 1. All our routines are fully implemented on the GPU, so that there are no transfers
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FIG. S3. Variance of the packing fraction Var(Φ) as a function of the system size L. We use the same set of parameters as in Fig. S2; the
maximum simulation time tmax is indicated on the figure.
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FIG. S4. Influence of elastic time scale 1/µk on the confluent dynamics. Left: Mean square displacement. Right: Self-Intermediate scattering
function. All runs were performed at k = 1, a/d0 = 0.01, d0 = 0.003 and ε = 0.15.

between DEVICE-HOST during the MD execution. The only routines executed by the host (colored in blue) are those required
by the user in order to save data. It is worth mentioning that these operations require data transfer between the DEVICE and the
HOST, see the red colored text.

Our CUDA kernels are moderately optimized, trying to keep aligned and coalesced memory access, and avoiding threads
divergence and atomic functions. Further optimizations are still possible, but there are diminishing returns since at some point
they will obfuscate the code for a negligible speedup. As defensive programming techniques we use assertions, and each
routine is independently tested before implementation. We do not use heavy database implementations and/or post processing
packages: In most cases the output of our simulation is already the final result. Finally, we used external imaging routines for
visualization, testing and presentation purposes.
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Algorithm 1: Typical Simulation Scheme

(0) Give atoms initial positions and velocities;
for Simulation time do
(1) Predict next atom positions:

(a) Get Forces;
(b) Move Atoms and Update Velocities;
(c) Apply Boundary Conditions;
(c*) Apply Lees-Edwards boundary conditions during force-shear simulations;

(2) Cell Functions:
(a) Cell death;
(b) Cell division;

(3) Build neighbours:
if (2) or atoms move too far then

(a) Build the linked-list;
(b) Using (a) build the neighbour list of each atom;

(4) Analysis:
if Simulation time then

(a) Standard properties: pressure, density, etc.;
(b) Transport properties: Mean square displacement etc.;
(c) Transfer (a) and (b) to the host (CPU);
(d) Save (a) (b);

(5) Save Configurations:
if Simulation time then

(a) Transfer atom properties to the host (CPU);
(b) Save (a);
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