48 research outputs found

    Species Diversity and Habitat Preferences of Aculeata (Insecta: Hymenoptera) of Urban and Suburban Gardens in Brno-City (Czech Republic)

    Get PDF
    I conducted a survey of aculeate Hymenoptera in urban and suburban gardens of Brno-city in August 2015. For my survey, I selected three individual gardens, and in each of them chose three type of microhabitats: tree, grass and patch. I used yellow pan traps for taxon sampling. Using this method, I recorded 382 specimens belonging to 76 species. Subsequently, the basic indices of species diversity in individual gardens were calculated, and statistical analyses of individual gardens and various microhabitats were created. I report large differences between the Aculeata taxa found in urban and suburban gardens. Habitat preferences of species between microhabitats were discovered as well. Furthermore, I report 14 species mentioned in the Red List of threatened species of the Czech Republic (Straka 2005a,b) (hereinafter referred to as Red List); as well as one invasive species Isodontia mexicana (Saussure, 1867) and one species Pison atrum Spinola, 1808 recently reported as new for the Czech Republic (reported after the publication of the Red List itself).O

    Two Bee-Pollinated Plant Species Show Higher Seed Production when Grown in Gardens Compared to Arable Farmland

    Get PDF
    Background Insect pollinator abundance, in particular that of bees, has been shown to be high where there is a super-abundance of floral resources; for example in association with mass-flowering crops and also in gardens where flowering plants are often densely planted. Since land management affects pollinator numbers, it is also likely to affect the resultant pollination of plants growing in these habitats. We hypothesised that the seed or fruit set of two plant species, typically pollinated by bumblebees and/or honeybees might respond in one of two ways: 1) pollination success could be reduced when growing in a floriferous environment, via competition for pollinators, or 2) pollination success could be enhanced because of increased pollinator abundance in the vicinity. Methodology/Principal Findings We compared the pollination success of experimental plants of Glechoma hederacea L. and Lotus corniculatus L. growing in gardens and arable farmland. On the farms, the plants were placed either next to a mass-flowering crop (oilseed rape, Brassica napus L. or field beans, Vicia faba L.) or next to a cereal crop (wheat, Triticum spp.). Seed set of G. hederacea and fruit set of L. corniculatus were significantly higher in gardens compared to arable farmland. There was no significant difference in pollination success of G. hederacea when grown next to different crops, but for L. corniculatus, fruit set was higher in the plants growing next to oilseed rape when the crop was in flower. Conclusions/Significance The results show that pollination services can limit fruit set of wild plants in arable farmland, but there is some evidence that the presence of a flowering crop can facilitate their pollination (depending on species and season). We have also demonstrated that gardens are not only beneficial to pollinators, but also to the process of pollination

    Diversity and abundance of solitary and primitively eusocial bees in an urban centre: a case study from Northampton (England)

    Get PDF
    The apparent reduction of solitary and primitively eusocial bees populations has remained a huge concern over the past few decades and urbanisation is considered as one of the factors affecting bees at different scales depending on bee guild. As urbanisation is increasing globally it necessitates more research to understand the complex community dynamics of solitary and primitively eusocial bees in urban settings. We investigated the urban core of a British town for diversity and abundance of solitary bees using standardized methods, and compared the results with nearby meadows and nature reserves. The study recorded 48 species within the town, about 22 % of the total species and 58 % of the genera of solitary bees in the United Kingdom. Furthermore we found the urban core to be more diverse and abundant in solitary and primitively eusocial bees compared to the meadows and nature re-serves. Of particular note was an urban record of the nationally rare Red Data Book species Coelioxys quadridentata and its host Anthophora quadrimaculata. This research demonstrates that urban settings can contribute significantly to the conservation of solitary and primitively eusocial bees in Britain

    Changing Bee and Hoverfly Pollinator Assemblages along an Urban-Rural Gradient

    Get PDF
    The potential for reduced pollination ecosystem service due to global declines of bees and other pollinators is cause for considerable concern. Habitat degradation, destruction and fragmentation due to agricultural intensification have historically been the main causes of this pollinator decline. However, despite increasing and accelerating levels of global urbanization, very little research has investigated the effects of urbanization on pollinator assemblages. We assessed changes in the diversity, abundance and species composition of bee and hoverfly pollinator assemblages in urban, suburban, and rural sites across a UK city.Bees and hoverflies were trapped and netted at 24 sites of similar habitat character (churchyards and cemeteries) that varied in position along a gradient of urbanization. Local habitat quality (altitude, shelter from wind, diversity and abundance of flowers), and the broader-scale degree of urbanization (e.g. percentage of built landscape and gardens within 100 m, 250 m, 500 m, 1 km, and 2.5 km of the site) were assessed for each study site. The diversity and abundance of pollinators were both significantly negatively associated with higher levels of urbanization. Assemblage composition changed along the urbanization gradient with some species positively associated with urban and suburban land-use, but more species negatively so. Pollinator assemblages were positively affected by good site habitat quality, in particular the availability of flowering plants.Our results show that urban areas can support diverse pollinator assemblages, but that this capacity is strongly affected by local habitat quality. Nonetheless, in both urban and suburban areas of the city the assemblages had fewer individuals and lower diversity than similar rural habitats. The unique development histories of different urban areas, and the difficulty of assessing mobile pollinator assemblages in just part of their range, mean that complementary studies in different cities and urban habitats are required to discover if these findings are more widely applicable

    Effective record keeping

    No full text
    corecore