21 research outputs found

    Temperature synchronizes temporal variation in laying dates across European hole-nesting passerines

    Get PDF
    Publisher Copyright: © 2022 The Authors. Ecology published by Wiley Periodicals LLC on behalf of The Ecological Society of America.Identifying the environmental drivers of variation in fitness-related traits is a central objective in ecology and evolutionary biology. Temporal fluctuations of these environmental drivers are often synchronized at large spatial scales. Yet, whether synchronous environmental conditions can generate spatial synchrony in fitness-related trait values (i.e., correlated temporal trait fluctuations across populations) is poorly understood. Using data from long-term monitored populations of blue tits (Cyanistes caeruleus, n = 31), great tits (Parus major, n = 35), and pied flycatchers (Ficedula hypoleuca, n = 20) across Europe, we assessed the influence of two local climatic variables (mean temperature and mean precipitation in February–May) on spatial synchrony in three fitness-related traits: laying date, clutch size, and fledgling number. We found a high degree of spatial synchrony in laying date but a lower degree in clutch size and fledgling number for each species. Temperature strongly influenced spatial synchrony in laying date for resident blue tits and great tits but not for migratory pied flycatchers. This is a relevant finding in the context of environmental impacts on populations because spatial synchrony in fitness-related trait values among populations may influence fluctuations in vital rates or population abundances. If environmentally induced spatial synchrony in fitness-related traits increases the spatial synchrony in vital rates or population abundances, this will ultimately increase the risk of extinction for populations and species. Assessing how environmental conditions influence spatiotemporal variation in trait values improves our mechanistic understanding of environmental impacts on populations.Peer reviewe

    Interaction of climate change with effects of conspecific and heterospecific density on reproduction

    Get PDF
    We studied the relationship between temperature and the coexistence of great titParus majorand blue titCyanistes caeruleus, breeding in 75 study plots across Europe and North Africa. We expected an advance in laying date and a reduction in clutch size during warmer springs as a general response to climate warming and a delay in laying date and a reduction in clutch size during warmer winters due to density-dependent effects. As expected, as spring temperature increases laying date advances and as winter temperature increases clutch size is reduced in both species. Density of great tit affected the relationship between winter temperature and laying date in great and blue tit. Specifically, as density of great tit increased and temperature in winter increased both species started to reproduce later. Density of blue tit affected the relationship between spring temperature and blue and great tit laying date. Thus, both species start to reproduce earlier with increasing spring temperature as density of blue tit increases, which was not an expected outcome, since we expected that increasing spring temperature should advance laying date, while increasing density should delay it cancelling each other out. Climate warming and its interaction with density affects clutch size of great tits but not of blue tits. As predicted, great tit clutch size is reduced more with density of blue tits as temperature in winter increases. The relationship between spring temperature and density on clutch size of great tits depends on whether the increase is in density of great tit or blue tit. Therefore, an increase in temperature negatively affected the coexistence of blue and great tits differently in both species. Thus, blue tit clutch size was unaffected by the interaction effect of density with temperature, while great tit clutch size was affected in multiple ways by these interactions terms.Peer reviewe

    Variation in clutch size in relation to nest size in birds

    Get PDF
    Peer reviewe

    Effects of structural and functional habitat gaps on breeding woodland birds: working harder for less

    Get PDF
    The effects of habitat gaps on breeding success and parental daily energy expenditure (DEE) were investigated in great tits (Parus major) and blue tits (Cyanistes caeruleus) in urban parkland (Cardiff, UK) compared with birds in deciduous woodland (eastern England, UK). Tree canopy height, the percentage of gap in the canopy and the percentage of oak (in the wood only) within a 30 m radius of nest boxes were obtained from airborne remote-sensed data. Breeding success was monitored and parental DEE (great tits: both habitats; blue tits: park only) was measured using doubly labelled water in birds feeding young. In the park, mean (± SD) tree height (7.5 ± 4.7 m) was less than in the wood (10.6 ± 4.5 m), but the incidence of gaps (32.7 ± 22.6%) was greater (9.2 ± 14.7%). Great tits and blue tits both reared fewer young in the park and chick body mass was also reduced in park-reared great tits. Park great tits had a higher DEE (86.3 ± 12.3 kJ day-1) than those in the wood (78.0 ± 11.7 kJ day-1) and, because of smaller brood sizes, worked about 64% harder for each chick reared. Tits in the park with more than about 35% gap around their boxes had higher DEEs than the average for the habitat. In the wood, great tits with less oak around their boxes worked harder than average. Thus structural gaps, and functional gaps generated by variation in the quality of foraging habitat, increased the costs of rearing young

    How blue are British tits? Sex, age and environmental effects

    No full text
    Capsule The blue colour of the coverts and crowns of Blue Tits Cyanistes caeruleus and Great Tits Parus major is influenced by sex, age and environmental factors. Aims To quantify the blueness of two species of tits breeding in different habitats in Britain. Methods By manipulating daylength in the laboratory, adult Blue Tits were induced to moult at fast and slow speeds. When they had finished, the blue colour of their wing coverts and crowns was measured (in the range visible to human observers), and compared with the colour of birds caught in the field. Results As well as highly significant sex and age differences in colour, Blue Tits were 26% bluer in 1998 than 2000, and male Great Tits were 15% less blue in small woods than in large woods in our study population in East Anglia, England. Both species became more saturated with blue up to the age of three years. British Cy. c. obscurus were darker blue than Cy. c. caeruleus of Continental Europe . Conclusions There are significant environmental influences on the blueness of British tits in addition to the well-known age and sex effects
    corecore