573 research outputs found

    Symmetries in Quantum Key Distribution and the Connection between Optimal Attacks and Optimal Cloning

    Full text link
    We investigate the connection between the optimal collective eavesdropping attack and the optimal cloning attack where the eavesdropper employs an optimal cloner to attack the quantum key distribution (QKD) protocol. The analysis is done in the context of the security proof in [Devetak and Winter, Proc. of the Roy. Soc. of London Series A, 461, 207 (2005); Kraus, Gisin and Renner, Phys. Rev. Lett. 95, 080501 (2005)] for discrete variable protocols in d-dimensional Hilbert spaces. We consider a scenario in which the protocols and cloners are equipped with symmetries. These symmetries are used to define a quantum cloning scenario. We find that, in general, it does not hold that the optimal attack is an optimal cloner. However, there are classes of protocols, where we can identify an optimal attack by an optimal cloner. We analyze protocols with 2, d and d+1 mutually unbiased bases where d is a prime, and show that for the protocols with 2 and d+1 MUBs the optimal attack is an optimal cloner, but for the protocols with d MUBs, it is not. Finally, we give criteria to identify protocols which have different signal states, but the same optimal attack. Using these criteria, we present qubit protocols which have the same optimal attack as the BB84 protocol or the 6-state protocol

    Structural and luminescence imaging and characterisation of semiconductors in the scanning electron microscope

    Get PDF
    The scanning electron microscopy techniques of electron backscatter diffraction (EBSD), electron channelling contrast imaging (ECCI) and hyperspectral cathodoluminescence imaging (CL) provide complementary information on the structural and luminescence properties of materials rapidly and non-destructively, with a spatial resolution of tens of nanometres. EBSD provides crystal orientation, crystal phase and strain analysis, whilst ECCI is used to determine the planar distribution of extended defects over a large area of a given sample. CL reveals the influence of crystal structure, composition and strain on intrinsic luminescence and/or reveals defect-related luminescence. Dark features are also observed in CL images where carrier recombination at defects is non-radiative. The combination of these techniques is a powerful approach to clarifying the role of crystallography and extended defects on a materials' light emission properties. Here we describe the EBSD, ECCI and CL techniques and illustrate their use for investigating the structural and light emitting properties of UV-emitting nitride semiconductor structures. We discuss our investigations of the type, density and distribution of defects in GaN, AlN and AlGaN thin films and also discuss the determination of the polarity of GaN nanowires

    Psychoanalytic sociology and the traumas of history: Alexander Mitscherlich between the disciplines

    Get PDF
    This article examines the way aspects of recent history were excluded in key studies emerging from psychoanalytic social psychology of the mid-twentieth century. It draws on work by Erikson, Marcuse and Fromm, but focuses in particular on Alexander Mitscherlich. Mitscherlich, a social psychologist associated with the later Frankfurt school, was also the most important psychoanalytic figure in postwar Germany. This makes his work significant for tracing ways in which historical experience of the war and Nazism was filtered out of psychosocial narratives in this period, in favour of more structural analyses of the dynamics of social authority. Mitscherlich?s 1967 work The Inability to Mourn, co-authored with Margarete Mitscherlich, is often cited as the point at which the ?missing? historical experience flooded back into psychoanalytic accounts of society. I argue that this landmark publication doesn?t hail the shift towards the psychoanalysis of historical experience with which it is often associated. These more sociological writers of the mid-century were writing before the impact of several trends occurring in the 1980s-90s which decisively shifted psychoanalytic attention away from the investigation of social authority and towards a focus on historical trauma. Ultimately this is also a narrative about the transformations which occur when psychoanalysis moves across disciplines

    FRET characterisation for cross-bridge dynamics in single-skinned rigor muscle fibres

    Get PDF
    In this work we demonstrate for the first time the use of Förster resonance energy transfer (FRET) as an assay to monitor the dynamics of cross-bridge conformational changes directly in single muscle fibres. The advantage of FRET imaging is its ability to measure distances in the nanometre range, relevant for structural changes in actomyosin cross-bridges. To reach this goal we have used several FRET couples to investigate different locations in the actomyosin complex. We exchanged the native essential light chain of myosin with a recombinant essential light chain labelled with various thiol-reactive chromophores. The second fluorophore of the FRET couple was introduced by three approaches: labelling actin, labelling SH1 cysteine and binding an adenosine triphosphate (ATP) analogue. We characterise FRET in rigor cross-bridges: in this condition muscle fibres are well described by a single FRET population model which allows us to evaluate the true FRET efficiency for a single couple and the consequent donor–acceptor distance. The results obtained are in good agreement with the distances expected from crystallographic data. The FRET characterisation presented herein is essential before moving onto dynamic measurements, as the FRET efficiency differences to be detected in an active muscle fibre are on the order of 10–15% of the FRET efficiencies evaluated here. This means that, to obtain reliable results to monitor the dynamics of cross-bridge conformational changes, we had to fully characterise the system in a steady-state condition, demonstrating firstly the possibility to detect FRET and secondly the viability of the present approach to distinguish small FRET variations

    Malignant inflammation in cutaneous T-cell lymphoma: a hostile takeover

    Get PDF
    Cutaneous T-cell lymphomas (CTCL) are characterized by the presence of chronically inflamed skin lesions containing malignant T cells. Early disease presents as limited skin patches or plaques and exhibits an indolent behavior. For many patients, the disease never progresses beyond this stage, but in approximately one third of patients, the disease becomes progressive, and the skin lesions start to expand and evolve. Eventually, overt tumors develop and the malignant T cells may disseminate to the blood, lymph nodes, bone marrow, and visceral organs, often with a fatal outcome. The transition from early indolent to progressive and advanced disease is accompanied by a significant shift in the nature of the tumor-associated inflammation. This shift does not appear to be an epiphenomenon but rather a critical step in disease progression. Emerging evidence supports that the malignant T cells take control of the inflammatory environment, suppressing cellular immunity and anti-tumor responses while promoting a chronic inflammatory milieu that fuels their own expansion. Here, we review the inflammatory changes associated with disease progression in CTCL and point to their wider relevance in other cancer contexts. We further define the term "malignant inflammation" as a pro-tumorigenic inflammatory environment orchestrated by the tumor cells and discuss some of the mechanisms driving the development of malignant inflammation in CTCL

    Development of an optogenetic toolkit for neural circuit dissection in squirrel monkeys

    Get PDF
    Optogenetic tools have opened a rich experimental landscape for understanding neural function and disease. Here, we present the first validation of eight optogenetic constructs driven by recombinant adeno-associated virus (AAV) vectors and a WGA-Cre based dual injection strategy for projection targeting in a widely-used New World primate model, the common squirrel monkey Saimiri sciureus. We observed opsin expression around the local injection site and in axonal projections to downstream regions, as well as transduction to thalamic neurons, resembling expression patterns observed in macaques. Optical stimulation drove strong, reliable excitatory responses in local neural populations for two depolarizing opsins in anesthetized monkeys. Finally, we observed continued, healthy opsin expression for at least one year. These data suggest that optogenetic tools can be readily applied in squirrel monkeys, an important first step in enabling precise, targeted manipulation of neural circuits in these highly trainable, cognitively sophisticated animals. In conjunction with similar approaches in macaques and marmosets, optogenetic manipulation of neural circuits in squirrel monkeys will provide functional, comparative insights into neural circuits which subserve dextrous motor control as well as other adaptive behaviors across the primate lineage. Additionally, development of these tools in squirrel monkeys, a well-established model system for several human neurological diseases, can aid in identifying novel treatment strategies

    Doing synthetic biology with photosynthetic microorganisms

    Get PDF
    The use of photosynthetic microbes as synthetic biology hosts for the sustainable production of commodity chemicals and even fuels has received increasing attention over the last decade. The number of studies published, tools implemented, and resources made available for microalgae have increased beyond expectations during the last few years. However, the tools available for genetic engineering in these organisms still lag those available for the more commonly used heterotrophic host organisms. In this mini-review, we provide an overview of the photosynthetic microbes most commonly used in synthetic biology studies, namely cyanobacteria, chlorophytes, eustigmatophytes and diatoms. We provide basic information on the techniques and tools available for each model group of organisms, we outline the state-of-the-art, and we list the synthetic biology tools that have been successfully used. We specifically focus on the latest CRISPR developments, as we believe that precision editing and advanced genetic engineering tools will be pivotal to the advancement of the field. Finally, we discuss the relative strengths and weaknesses of each group of organisms and examine the challenges that need to be overcome to achieve their synthetic biology potential.Peer reviewe

    A comparative analysis of body psychotherapy and dance movement psychotherapy from a European perspective

    Get PDF
    corecore