15 research outputs found
CO2 capture and storage (CCS) cost reduction via infrastructure right-sizing
Carbon capture and storage (CCS) will be a critical component of a portfolio of low-carbon energy technologies required to combat climate change (Technology Roadmap, 2013). As such, an extensive transportation infrastructure will be required to transport captured CO2 from different sources to the available sinks. Several studies in the literature suggest that shared oversized pipeline networks may be the most efficient long term option compared to single source to sink pipelines, based on increased CCS deployment over the years and therefore increased CO2 flowrate to the transport network. However, what is neglected in this vision is that the deployment of intermittent renewable energy tends to displace thermal power generation. This directly reduces the amount of fossil fuel burned, CO2 produced, captured and transported through the network. This paper presents an optimisation methodology to âright-sizeâ CO2 transport infrastructure, explicitly accounting for the transient flow of CO2 arising from the co-deployment of intermittent renewable energy generators. By application of this methodology, we demonstrate that capital cost reductions of up to 28% are possible relative to a business-as-usual design case
Layered double hydroxideâderived copperâbased oxygen carriers for chemical looping applications: oxygen release kinetics and impact of loading on longâterm performance
Chemical looping with oxygen uncoupling, a variant of chemical looping combustion, requires chemically and physically stable oxygen carriers over long-term redox cycling. Copper-based oxygen carriers are characterised by high oxygen release rates but experience sintering at high temperatures. The use of layered double hydroxides (LDHs), prepared via co-precipitation, as oxygen carrier precursors has been shown to effectively limit deactivation of copper-based mixed metal oxides (MMOs) over extended redox cycling. The LDH-derived MMOs have highly dispersed metal oxide within a stable support; the high dispersion of metals is due to the LDH precursor structure. In this work, a fluidised bed reactor (FBR) was used to study the intrinsic kinetics of oxygen release from CuO/MgAl2O4 oxygen carriers synthesised via the LDH-MMO design strategy. The long-term performance of MMOs with higher loadings of CuO, calcined from LDHs with higher Cu contents, was also investigated using an FBR. The intrinsic kinetics were determined using a kinetic model incorporating an effectiveness factor. By minimising the effects of intra- and inter-particle mass transfer, the activation energy and the pre-exponential factor of the lower loading MMOs were determined to be 51 ± 3 kJ molâ1 and 0.0567 sâ1, respectively. All MMOs showed excellent stability over 100 redox cycles in a thermogravimetric analyser. However, the pH during co-precipitation of the LDHs affected the stability of the MMOs in an FBR. The MMOs calcined from LDHs synthesised at pH 9.5 disintegrated during operation, whilst those produced from LDHs synthesised at pH 11 maintained high conversion and physical integrity over 100 redox cycles. © 2023 The Authors. Greenhouse Gases: Science and Technology published by Society of Chemical Industry and John Wiley & Sons Ltd
Enhancement of ironâbased oxygen carriers through alloying with tungsten oxide for chemical looping applications including water splitting
Chemical looping applications offer a variety of options to decarbonise different industrial sectors, such as iron and steel and hydrogen production. Chemical looping with water splitting (CLWS) is a chemical looping technology, which produces H2 while simultaneously capturing CO2. The selection of oxygen carriers (OCs) available to be used in CLWS is finite, due to the thermodynamic limitations of the oxidation with steam for different materials at the relevant process temperatures. Iron-based materials are one of the most widely studied options for chemical looping combustion (CLC), touted for their relative abundance and low cost; likewise, for CLWS, iron is the most promising option. However, when the reduction of iron oxide (Fe2O3) is extended to wĂŒstite (FeO) and iron (Fe), agglomeration and sintering problems are the main challenge for fluidisation.
This work presents iron and tungsten mixed oxides as the OCs for a family of chemical looping applications. The OCs were produced via co-precipitation; performance assessment was conducted in a thermogravimetric analyser and a lab-scale fluidised bed reactor over continuous redox cycles. The use of tungsten combined with iron results in a solid solution of tungsten within the Fe2O3 matrix that produced a more mechanically stable material during operation, which performed well during multiple redox cycles with no apparent decrease in the oxygen transport capacity and showed no apparent agglomeration. Furthermore, materials containing tungsten showed a resistance to carbon deposition, whereas the reference Fe2O3 showed peaks of CO and CO2 during the oxidation period, thus indicating carbon deposition. © 2023 Society of Chemical Industry and John Wiley & Sons, Ltd
Precursor engineering of hydrotalcite-derived redox sorbents for reversible and stable thermochemical oxygen storage
Chemical looping processes based on multiple-step reduction and oxidation of metal oxides hold great promise for a variety of energy applications, such as CO2 capture and conversion, gas separation, energy storage, and redox catalytic processes. Copper-based mixed oxides are one of the most promising candidate materials with a high oxygen storage capacity. However, the structural deterioration and sintering at high temperatures is one key scientific challenge. Herein, we report a precursor engineering approach to prepare durable copper-based redox sorbents for use in thermochemical looping processes for combustion and gas purification. Calcination of the CuMgAl hydrotalcite precursors formed mixed metal oxides consisting of CuO nanoparticles dispersed in the Mg-Al oxide support which inhibited the formation of copper aluminates during redox cycling. The copper-based redox sorbents demonstrated enhanced reaction rates, stable O2 storage capacity over 500 redox cycles at 900â°C, and efficient gas purification over a broad temperature range. We expect that our materials design strategy has broad implications on synthesis and engineering of mixed metal oxides for a range of thermochemical processes and redox catalytic applications
The calcium looping cycle for CO2 capture from power generation, cement manufacture and hydrogen production
Calcium looping is a CO2 capture scheme using solid CaO-based sorbents to remove CO2 from flue gases, e.g., from a power plant, producing a concentrated stream of CO2 (âŒ95%) suitable for storage. The scheme exploits the reversible gas-solid reaction between CO2 and CaO(s) to form CaCO3(s). Calcium looping has a number of advantages compared to closer-to-market capture schemes, including: the use of circulating fluidised bed reactors-a mature technology at large scale; sorbent derived from cheap, abundant and environmentally benign limestone and dolomite precursors; and the relatively small efficiency penalty that it imposes on the power/industrial process (i.e., estimated at 6-8 percentage points, compared to 9.5-12.5 from amine-based post-combustion capture). A further advantage is the synergy with cement manufacture, which potentially allows for decarbonisation of both cement manufacture and power production. In addition, a number of advanced applications offer the potential for significant cost reductions in the production of hydrogen from fossil fuels coupled with CO2 capture. The range of applications of calcium looping are discussed here, including the progress made towards demonstrating this technology as a viable post-combustion capture technology using small-pilot scale rigs, and the early progress towards a 2MW scale demonstrator. © 2010 The Institution of Chemical Engineers
Evolutionary characterization of lung adenocarcinoma morphology in TRACERx
Lung adenocarcinomas (LUADs) display a broad histological spectrum from low-grade lepidic tumors through to mid-grade acinar and papillary and high-grade solid, cribriform and micropapillary tumors. How morphology reflects tumor evolution and disease progression is poorly understood. Whole-exome sequencing data generated from 805 primary tumor regions and 121 paired metastatic samples across 248 LUADs from the TRACERx 421 cohort, together with RNA-sequencing data from 463 primary tumor regions, were integrated with detailed whole-tumor and regional histopathological analysis. Tumors with predominantly high-grade patterns showed increased chromosomal complexity, with higher burden of loss of heterozygosity and subclonal somatic copy number alterations. Individual regions in predominantly high-grade pattern tumors exhibited higher proliferation and lower clonal diversity, potentially reflecting large recent subclonal expansions. Co-occurrence of truncal loss of chromosomes 3p and 3q was enriched in predominantly low-/mid-grade tumors, while purely undifferentiated solid-pattern tumors had a higher frequency of truncal arm or focal 3q gains and SMARCA4 gene alterations compared with mixed-pattern tumors with a solid component, suggesting distinct evolutionary trajectories. Clonal evolution analysis revealed that tumors tend to evolve toward higher-grade patterns. The presence of micropapillary pattern and âtumor spread through air spacesâ were associated with intrathoracic recurrence, in contrast to the presence of solid/cribriform patterns, necrosis and preoperative circulating tumor DNA detection, which were associated with extra-thoracic recurrence. These data provide insights into the relationship between LUAD morphology, the underlying evolutionary genomic landscape, and clinical and anatomical relapse risk
Modeling and evaluation of ash-forming element fate and occurrence in woody biomass combustion in an entrained-flow burner
Biomass combustion equipment is often susceptible to ash deposition due to the relatively significant quantities of potassium, silicon, and other ash-forming elements in biomass. To evaluate the propensity for ash deposition resulting from biomass combustion, a biomass combustion model was integrated with a chemical equilibrium model to predict the fate and occurrence of ash-forming elements in a pilot-scale entrained-flow burner. The integrated model simulated the combustion of white wood (virgin wood) and recycled wood (treated wood) previously combusted in the burner. The key advantage of this model in comparison to a model with general equilibrium assumed is that it was able to consider the rate of release of trace and minor species with time, the local equilibrium in the particles, and separately, that in the continuum phase (which also included any solid or liquid materials nucleating). The simulation generated the fate and occurrence profiles of each ash-forming element along the burner. The qualitative comparisons between the modeled profiles and the previous experimental findings under similar operating conditions show reasonable agreement. The concentrations of ash-forming elements released from the burner were also compared with the experimental online inductively coupled plasma readings. However, the latter comparison shows overestimation using the modeled results and might suggest that further considerations of other parameters such as ash nucleation and coagulation are required. Nonetheless, based on the ongoing performance of the integrated model, future use of the model might be expanded to a broader range of problematic solid fuels such as herbaceous biomass or municipal solid waste