19 research outputs found

    SoK: Analyzing Adversarial Examples: A Framework to Study Adversary Knowledge

    Full text link
    Adversarial examples are malicious inputs to machine learning models that trigger a misclassification. This type of attack has been studied for close to a decade, and we find that there is a lack of study and formalization of adversary knowledge when mounting attacks. This has yielded a complex space of attack research with hard-to-compare threat models and attacks. We focus on the image classification domain and provide a theoretical framework to study adversary knowledge inspired by work in order theory. We present an adversarial example game, inspired by cryptographic games, to standardize attacks. We survey recent attacks in the image classification domain and classify their adversary's knowledge in our framework. From this systematization, we compile results that both confirm existing beliefs about adversary knowledge, such as the potency of information about the attacked model as well as allow us to derive new conclusions on the difficulty associated with the white-box and transferable threat models, for example, that transferable attacks might not be as difficult as previously thought

    Analyzing Adversarial Examples: A Framework to Study Adversary Knowledge

    Get PDF
    Adversarial examples are malicious inputs to trained machine learning models supplied to trigger a misclassification. This type of attack has been studied for close to a decade, and we find that there is a lack of study and formalization of adversary knowledge when mounting attacks. This has yielded a complex space of attack research with hard-to-compare threat models and attacks. We solve this in the image classification domain by providing a theoretical framework to study adversary knowledge inspired by work in order theory. We present an adversarial example game, based on cryptographic games, to standardize attack procedures. We survey recent attacks in the image classification domain that showcase the current state of adversarial example research. Together with our formalization, we compile results that both confirm existing beliefs about adversary knowledge, such as the potency of information about the attacked model as well as allow us to derive new conclusions on the difficulty associated with the white-box and transferable threat models, for example, transferable attacks might not be as difficult as previously thought

    Leveraging Optimization for Adaptive Attacks on Image Watermarks

    Full text link
    Untrustworthy users can misuse image generators to synthesize high-quality deepfakes and engage in unethical activities. Watermarking deters misuse by marking generated content with a hidden message, enabling its detection using a secret watermarking key. A core security property of watermarking is robustness, which states that an attacker can only evade detection by substantially degrading image quality. Assessing robustness requires designing an adaptive attack for the specific watermarking algorithm. When evaluating watermarking algorithms and their (adaptive) attacks, it is challenging to determine whether an adaptive attack is optimal, i.e., the best possible attack. We solve this problem by defining an objective function and then approach adaptive attacks as an optimization problem. The core idea of our adaptive attacks is to replicate secret watermarking keys locally by creating surrogate keys that are differentiable and can be used to optimize the attack's parameters. We demonstrate for Stable Diffusion models that such an attacker can break all five surveyed watermarking methods at no visible degradation in image quality. Optimizing our attacks is efficient and requires less than 1 GPU hour to reduce the detection accuracy to 6.3% or less. Our findings emphasize the need for more rigorous robustness testing against adaptive, learnable attackers.Comment: ICLR'2
    corecore