163 research outputs found

    Inverted Classroom in der Studieneingangsphase - individualisiertes Lernen als Hilfe beim Einstieg ins Studium

    Get PDF
    Bei Inverted Classroom wird eine selbstgesteuerte Vorbereitungsphase und eine interaktive Präsenzphase kombiniert. Methodik und didaktische Struktur werden entsprechend des jeweiligen Lehrkontextes gewählt und aufeinander abgestimmt. Das Konzept des Inverted Classroom bietet methodische Ansatzpunkte, um Lehre auch in der Studieneingangsphase flexibel zu gestalten und den Übergang ins Studium zu erleichtern. In der vorliegenden Studie wurden Studierende aus drei Grundlagenveranstaltungen im Inverted-Classroom-Format befragt, wie sie mit dem jeweiligen Format umgehen. Im Ergebnis zeigte sich, dass das Konzept des Inverted Classroom dem Lern- und Betreuungsbedarf der Studierenden entgegenkommt. Die Aussagen weisen auf eine Stärkung der fachbezogenen Selbstwirksamkeitserwartung hin - einen zentralen Indikator für den Studienverbleib. Mit den Ergebnissen soll unterstrichen werden, dass Inverted Classroom einen erfolgreichen Übergang ins Studium unterstützen kann. Zukünftig sollen die Annahmen in Bezug auf weitere Blended-Learning-Konzepte und reine Präsenzlehre geprüft werden. (DIPF/Orig.

    Formin-2 drives polymerisation of actin filaments enabling segregation of apicoplasts and cytokinesis in Plasmodium falciparum

    Get PDF
    Plasmodium falciparum actin, apart from its role in erythrocyte invasion, is implicated in endocytosis, cytokinesis and inheritance of the chloroplast-like organelle - the apicoplast. However, the inability to visualise filamentous actin (F-actin) dynamics, a limitation we recently overcame for Toxoplasma (Periz et al, 2017), restricted characterisation of both F-actin and actin regulatory proteins. Here, we expressed and validated actin-binding chromobodies as F-actin-sensors in Plasmodium falciparum and characterised in-vivo actin dynamics. F-actin could be chemically modulated, and genetically disrupted upon conditionally deleting actin-1. In a comparative approach, we demonstrate that Formin-2, a predicted nucleator of F-actin, is responsible for apicoplast inheritance in both Plasmodium and Toxoplasma, and additionally mediates efficient cytokinesis in Plasmodium. Finally, time-averaged local intensity measurements of F-actin in Toxoplasma conditional mutants revealed molecular determinants of spatiotemporally regulated F-actin flow. Together, our data indicate that Formin-2 is the primary F-actin nucleator during apicomplexan intracellular growth, mediating multiple essential functions

    Detection of Antibodies against the Four Subtypes of Ebola Virus in Sera from Any Species Using a Novel Antibody-Phage Indicator Assay

    Get PDF
    AbstractThe natural host for Ebola virus, presumed to be an animal, has not yet been identified despite an extensive search following several major outbreaks in Africa. A straightforward approach used to determine animal contact with Ebola virus is by assessing the presence of specific antibodies in serum. This approach however has been made very difficult by the absence of specific reagents required for the detection of antibodies from the majority of wild animal species. In this study, we isolated a human monoclonal antibody Fab fragment, KZ51, that reacts with an immunodominant epitope on Ebola virus nucleoprotein (NP) that is conserved on all four Ebola virus subtypes. The antibody KZ51 represents a major specificity as sera from all convalescent patients tested (10/10) and sera from guinea pigs infected with each of the four Ebola virus subtypes competed strongly with KZ51 for binding to radiation-inactivated Ebola virus. These features allowed us to develop a novel assay for the detection of seroconversion irrespective of Ebola virus subtype or animal species. In this assay, the binding of KZ51 Fab-phage particles is used as an indicator assay and the presence of specific antibodies against Ebola virus in sera is indicated by binding competition. A prominent feature of the assay is that the Fab-phage particles may be prestained with a dye so that detection of binding can be directly determined by visual inspection. The assay is designed to be both simple and economical to enable its use in the field

    Gel-like inclusions of C-terminal fragments of TDP-43 sequester stalled proteasomes in neurons

    Get PDF
    International audienceAggregation of the multifunctional RNA-binding protein TDP-43 defines large subgroups of amyotrophic lateral sclerosis and frontotemporal dementia and correlates with neurodegeneration in both diseases. In disease, characteristic C-terminal fragments of ~25 kDa ("TDP-25") accumulate in cytoplasmic inclusions. Here, we analyze gain-of-function mechanisms of TDP-25 combining cryo-electron tomography, proteomics, and functional assays. In neurons, cytoplasmic TDP-25 inclusions are amorphous, and photobleaching experiments reveal gel-like biophysical properties that are less dynamic than nuclear TDP-43. Compared with full-length TDP-43, the TDP-25 interactome is depleted of low-complexity domain proteins. TDP-25 inclusions are enriched in 26S proteasomes adopting exclusively substrate-processing conformations, suggesting that inclusions sequester proteasomes, which are largely stalled and no longer undergo the cyclic conformational changes required for proteolytic activity. Reporter assays confirm that TDP-25 impairs proteostasis, and this inhibitory function is enhanced by ALScausing TDP-43 mutations. These findings support a pathophysiological relevance of proteasome dysfunction in ALS/FTD

    Can Consistent Benchmarking within a Standardized Pain Management Concept Decrease Postoperative Pain after Total Hip Arthroplasty? A Prospective Cohort Study including 367 Patients

    Get PDF
    Background: The number of total hip replacement surgeries has steadily increased over recent years. Reduction in postoperative pain increases patient satisfaction and enables better mobilization. Thus, pain management needs to be continuously improved. Problems are often caused not only by medical issues but also by organization and hospital structure. The present study shows how the quality of pain management can be increased by implementing a standardized pain concept and simple, consistent, benchmarking. Methods: All patients included in the study had undergone total hip arthroplasty (THA). Outcome parameters were analyzed 24 hours after surgery by means of the questionnaires from the German-wide project "Quality Improvement in Postoperative Pain Management" (QUIPS). A pain nurse interviewed patients and continuously assessed outcome quality parameters. A multidisciplinary team of anesthetists, orthopedic surgeons, and nurses implemented a regular procedure of data analysis and internal benchmarking. The health care team was informed of any results, and suggested improvements. Every staff member involved in pain management participated in educational lessons, and a special pain nurse was trained in each ward. Results: From 2014 to 2015, 367 patients were included. The mean maximal pain score 24 hours after surgery was 4.0 (+/- 3.0) on an 11-point numeric rating scale, and patient satisfaction was 9.0 (+/- 1.2). Over time, the maximum pain score decreased (mean 3.0, +/- 2.0), whereas patient satisfaction significantly increased (mean 9.8, +/- 0.4; p<0.05). Among 49 anonymized hospitals, our clinic stayed on first rank in terms of lowest maximum pain and patient satisfaction over the period. Conclusion: Results were already acceptable at the beginning of benchmarking a standardized pain management concept. But regular benchmarking, implementation of feedback mechanisms, and staff education made the pain management concept even more successful. Multidisciplinary teamwork and flexibility in adapting processes seem to be highly important for successful pain management

    Proteomics and C9orf72 neuropathology identify ribosomes as poly-GR/PR interactors driving toxicity

    Get PDF
    Frontotemporal dementia and amyotrophic lateral sclerosis patients with C9orf72 mutation show cytoplasmic poly-GR and poly-PR aggregates. Short poly-(Gly-Arg) and poly-(Pro-Arg) (poly-GR/PR) repeats localizing to the nucleolus are toxic in various model systems, but no interactors have been validated in patients. Here, the neuronal interactomes of cytoplasmic GFP-(GR)(149) and nucleolar (PR)(175)-GFP revealed overlapping RNA-binding proteins, including components of stress granules, nucleoli, and ribosomes. Overexpressing the poly-GR/PR interactors STAU1/2 and YBX1 caused cytoplasmic aggregation of poly-GR/PR in large stress granule-like structures, whereas NPM1 recruited poly-GR into the nucleolus. Poly-PR expression reduced ribosome levels and translation consistent with reduction of synaptic proteins detected by proteomics. Surprisingly, truncated GFP-(GR)(53), but not GFP-(GR)(149), localized to the nucleolus and reduced ribosome levels and translation similar to poly-PR, suggesting that impaired ribosome biogenesis may be driving the acute toxicity observed in vitro. In patients, only ribosomes and STAU2 co-aggregated with poly-GR/PR. Partial sequestration of ribosomesmay chronically impair protein synthesis even in the absence of nucleolar localization and contribute to pathogenesis

    Immunolocalization of sarcolemmal dihydropyridine receptor and sarcoplasmic reticular triadin and ryanodine receptor in rabbit ventricle and atrium

    Get PDF
    The subcellular distribution of sarcolemmal dihydropyridine receptor (DHPR) and sarcoplasmic reticular triadin and Ca2+ release channel/ryanodine receptor (RyR) was determined in adult rabbit ventricle and atrium by double labeling immunofluorescence and laser scanning confocal microscopy. In ventricular muscle cells the immunostaining was observed primarily as transversely oriented punctate bands spaced at approximately 2-micron intervals along the whole length of the muscle fibers. Image analysis demonstrated a virtually complete overlap of the staining patterns of the three proteins, suggesting their close association at or near dyadic couplings that are formed where the sarcoplasmic reticulum (SR) is apposed to the surface membrane or its infoldings, the transverse (T-) tubules. In rabbit atrial cells, which lack an extensive T-tubular system, DHPR-specific staining was observed to form discrete spots along the sarcolemma but was absent from the interior of the fibers. In atrium, punctate triadin- and RyR-specific staining was also observed as spots at the cell periphery and image analysis indicated that the three proteins were co- localized at, or just below, the sarcolemma. In addition, in the atrial cells triadin- and RyR-specific staining was observed to form transverse bands in the interior cytoplasm at regularly spaced intervals of approximately 2 micron. Electron microscopy suggested that this cytoplasmic staining was occurring in regions where substantial amounts of extended junctional SR were present. These data indicate that the DHPR codistributes with triadin and the RyR in rabbit ventricle and atrium, and furthermore suggest that some of the SR Ca2+ release channels in atrium may be activated in the absence of a close association with the DHPR

    Azimuthal and Single Spin Asymmetries in Hard Scattering Processes

    Get PDF
    In this article we review the present understanding of azimuthal and single spin asymmetries for inclusive and semi-inclusive particle production in unpolarized and polarized hadronic collisions at high energy and moderately large transverse momentum. After summarizing the experimental information available, we discuss and compare the main theoretical approaches formulated in the framework of perturbative QCD. We then present in some detail a generalization of the parton model with inclusion of spin and intrinsic transverse momentum effects. In this context, we extensively discuss the phenomenology of azimuthal and single spin asymmetries for several processes in different kinematical configurations. A comparison with the predictions of other approaches, when available, is also given. We finally emphasize some relevant open points and challenges for future theoretical and experimental investigation.Comment: 70 pages, 34 ps figures. Invited review paper to be published in Progress in Particle and Nuclear Physic

    Circulating Glucagon 1-61 Regulates Blood Glucose by Increasing Insulin Secretion and Hepatic Glucose Production

    Get PDF
    Glucagon is secreted from pancreatic a cells, and hypersecretion (hyperglucagonemia) contributes to diabetic hyperglycemia. Molecular heterogeneity in hyperglucagonemia is poorly investigated. By screening human plasma using high-resolution-proteomics, we identified several glucagon variants, among which proglucagon 1-61 (PG 1-61) appears to be the most abundant form. PG 1-61 is secreted in subjects with obesity, both before and after gastric bypass surgery, with protein and fat as the main drivers for secretion before surgery, but glucose after. Studies in hepatocytes and in b cells demonstrated that PG 1-61 dose-dependently increases levels of cAMP, through the glucagon receptor, and increases insulin secretion and protein levels of enzymes regulating glycogenolysis and gluconeogenesis. In rats, PG 1-61 increases blood glucose and plasma insulin and decreases plasma levels of amino acids in vivo. We conclude that glucagon variants, such as PG 1-61, may contribute to glucose regulation by stimulating hepatic glucose production and insulin secretion
    • …
    corecore