139 research outputs found

    The Atacama Cosmology Telescope: Extragalactic Sources at 148 GHz in the 2008 Survey

    Get PDF
    We report on extragalactic sources detected in a 455 square-degree map of the southern sky made with data at a frequency of 148 GHz from the Atacama Cosmology Telescope 2008 observing season. We provide a catalog of 157 sources with flux densities spanning two orders of magnitude: from 15 to 1500 mJy. Comparison to other catalogs shows that 98% of the ACT detections correspond to sources detected at lower radio frequencies. Three of the sources appear to be associated with the brightest cluster galaxies of low redshift X-ray selected galaxy clusters. Estimates of the radio to mm-wave spectral indices and differential counts of the sources further bolster the hypothesis that they are nearly all radio sources, and that their emission is not dominated by re-emission from warm dust. In a bright (>50 mJy) 148 GHz-selected sample with complete cross-identifications from the Australia Telescope 20 GHz survey, we observe an average steepening of the spectra between 5, 20, and 148 GHz with median spectral indices of α520=0.07±0.06\alpha_{\rm 5-20} = -0.07 \pm 0.06, α20148=0.39±0.04\alpha_{\rm 20-148} = -0.39 \pm0.04, and α5148=0.20±0.03\alpha_{\rm 5-148} = -0.20 \pm 0.03. When the measured spectral indices are taken into account, the 148 GHz differential source counts are consistent with previous measurements at 30 GHz in the context of a source count model dominated by radio sources. Extrapolating with an appropriately rescaled model for the radio source counts, the Poisson contribution to the spatial power spectrum from synchrotron-dominated sources with flux density less than 20 mJy is C^{\rm Sync} = (2.8 \pm 0.3) \times 10^{-6} \micro\kelvin^2.Comment: Accepted to Ap

    The Atacama Cosmology Telescope: A Measurement of the Cosmic Microwave Background Power Spectrum at 148 and 218 GHz from the 2008 Southern Survey

    Full text link
    We present measurements of the cosmic microwave background (CMB) power spectrum made by the Atacama Cosmology Telescope at 148 GHz and 218 GHz, as well as the cross-frequency spectrum between the two channels. Our results clearly show the second through the seventh acoustic peaks in the CMB power spectrum. The measurements of these higher-order peaks provide an additional test of the {\Lambda}CDM cosmological model. At l > 3000, we detect power in excess of the primary anisotropy spectrum of the CMB. At lower multipoles 500 < l < 3000, we find evidence for gravitational lensing of the CMB in the power spectrum at the 2.8{\sigma} level. We also detect a low level of Galactic dust in our maps, which demonstrates that we can recover known faint, diffuse signals.Comment: 19 pages, 13 figures. Submitted to ApJ. This paper is a companion to Hajian et al. (2010) and Dunkley et al. (2010

    The Atacama Cosmology Telescope: Sunyaev Zel'dovich Selected Galaxy Clusters at 148 GHz in the 2008 Survey

    Full text link
    We report on twenty-three clusters detected blindly as Sunyaev-Zel'dovich (SZ) decrements in a 148 GHz, 455 square-degree map of the southern sky made with data from the Atacama Cosmology Telescope 2008 observing season. All SZ detections announced in this work have confirmed optical counterparts. Ten of the clusters are new discoveries. One newly discovered cluster, ACT-CL J0102-4915, with a redshift of 0.75 (photometric), has an SZ decrement comparable to the most massive systems at lower redshifts. Simulations of the cluster recovery method reproduce the sample purity measured by optical follow-up. In particular, for clusters detected with a signal-to-noise ratio greater than six, simulations are consistent with optical follow-up that demonstrated this subsample is 100% pure. The simulations further imply that the total sample is 80% complete for clusters with mass in excess of 6x10^14 solar masses referenced to the cluster volume characterized by five hundred times the critical density. The Compton y -- X-ray luminosity mass comparison for the eleven best detected clusters visually agrees with both self-similar and non-adiabatic, simulation-derived scaling laws.Comment: 13 pages, 7 figures, Accepted for publication in Ap

    The Atacama Cosmology Telescope: Data Characterization and Map Making

    Get PDF
    We present a description of the data reduction and mapmaking pipeline used for the 2008 observing season of the Atacama Cosmology Telescope (ACT). The data presented here at 148 GHz represent 12% of the 90 TB collected by ACT from 2007 to 2010. In 2008 we observed for 136 days, producing a total of 1423 hours of data (11 TB for the 148 GHz band only), with a daily average of 10.5 hours of observation. From these, 1085 hours were devoted to a 850 deg^2 stripe (11.2 hours by 9.1 deg) centered on a declination of -52.7 deg, while 175 hours were devoted to a 280 deg^2 stripe (4.5 hours by 4.8 deg) centered at the celestial equator. We discuss sources of statistical and systematic noise, calibration, telescope pointing, and data selection. Out of 1260 survey hours and 1024 detectors per array, 816 hours and 593 effective detectors remain after data selection for this frequency band, yielding a 38% survey efficiency. The total sensitivity in 2008, determined from the noise level between 5 Hz and 20 Hz in the time-ordered data stream (TOD), is 32 micro-Kelvin sqrt{s} in CMB units. Atmospheric brightness fluctuations constitute the main contaminant in the data and dominate the detector noise covariance at low frequencies in the TOD. The maps were made by solving the least-squares problem using the Preconditioned Conjugate Gradient method, incorporating the details of the detector and noise correlations. Cross-correlation with WMAP sky maps, as well as analysis from simulations, reveal that our maps are unbiased at multipoles ell > 300. This paper accompanies the public release of the 148 GHz southern stripe maps from 2008. The techniques described here will be applied to future maps and data releases.Comment: 20 pages, 18 figures, 6 tables, an ACT Collaboration pape

    A measurement of the millimetre emission and the Sunyaev-Zel'dovich effect associated with low-frequency radio sources

    Get PDF
    We present a statistical analysis of the millimetre-wavelength properties of 1.4GHz-selected sources and a detection of the Sunyaev–Zel’dovich (SZ) effect associated with the haloes that host them. We stack data at 148, 218 and 277GHz from the Atacama Cosmology Telescope at the positions of a large sample of radio AGN selected at 1.4GHz. The thermal SZ effect associated with the haloes that host the AGN is detected at the 5σ level through its spectral signature, representing a statistical detection of the SZ effect in some of the lowest mass haloes (average M 200 ≈ 10 13 M. h −1 70 ) studied to date. The relation between the SZ effect and mass (based on weak lensing measurements of radio galaxies) is consistent with that measured by Planck for local bright galaxies. In the context of galaxy evolution models, this study confirms that galaxies with radio AGN also typically support hot gaseous haloes. Adding Herschel observations allows us to show that the SZ signal is not significantly contaminated by dust emission. Finally, we analyse the contribution of radio sources to the angular power spectrum of the cosmic microwave background

    Constraints on (2060) Chiron's size, shape, and surrounding material from the November 2018 and September 2019 stellar occultations

    Full text link
    After the discovery of rings around the largest known Centaur object, (10199) Chariklo, we carried out observation campaigns of stellar occultations produced by the second-largest known Centaur object, (2060) Chiron, to better characterize its physical properties and presence of material on its surroundings. We predicted and successfully observed two stellar occultations by Chiron. These observations were used to constrain its size and shape by fitting elliptical limbs with equivalent surface radii in agreement with radiometric measurements. Constraints on the (2060) Chiron shape are reported for the first time. Assuming an equivalent radius of Requiv_{equiv} = 1057+6^{+6}_{-7} km, we obtained a semi-major axis of a = 126 ±\pm 22 km. Considering Chiron's true rotational light curve amplitude and assuming it has a Jacobi equilibrium shape, we were able to derive a 3D shape with a semi-axis of a = 126 ±\pm 22 km, b = 109 ±\pm 19 km, and c = 68 ±\pm 13 km, implying in a volume-equivalent radius of Rvol_{vol} = 98 ±\pm 17 km, implying a density of 1119 ±\pm 4 kg m3^{-3}. We determined the physical properties of the 2011 secondary events around Chiron, which may then be directly compared with those of Chariklo rings, as the same method was used. Data obtained from SAAO in 2018 do not show unambiguous evidence of the proposed rings, mainly due to the large sampling time. Meanwhile, we discarded the possible presence of a permanent ring similar to (10199) Chariklo's C1R in optical depth and extension. Using the first multi-chord stellar occultation by (2060) Chiron and considering it to have a Jacobi equilibrium shape, we derived its 3D shape. New observations of a stellar occultation by (2060) Chiron are needed to further investigate the material's properties around Chiron, such as the occultation predicted for September 10, 2023

    Refined physical parameters for Chariklo's body and rings from stellar occultations observed between 2013 and 2020

    Get PDF
    Context. The Centaur (10199) Chariklo has the first ring system discovered around a small object. It was first observed using stellar occultation in 2013. Stellar occultations allow sizes and shapes to be determined with kilometre accuracy, and provide the characteristics of the occulting object and its vicinity. Aims. Using stellar occultations observed between 2017 and 2020, our aim is to constrain the physical parameters of Chariklo and its rings. We also determine the structure of the rings, and obtain precise astrometrical positions of Chariklo. Methods. We predicted and organised several observational campaigns of stellar occultations by Chariklo. Occultation light curves were measured from the datasets, from which ingress and egress times, and the ring widths and opacity values were obtained. These measurements, combined with results from previous works, allow us to obtain significant constraints on Chariklo's shape and ring structure. Results. We characterise Chariklo's ring system (C1R and C2R), and obtain radii and pole orientations that are consistent with, but more accurate than, results from previous occultations. We confirm the detection of W-shaped structures within C1R and an evident variation in radial width. The observed width ranges between 4.8 and 9.1 km with a mean value of 6.5 km. One dual observation (visible and red) does not reveal any differences in the C1R opacity profiles, indicating a ring particle size larger than a few microns. The C1R ring eccentricity is found to be smaller than 0.022 (3σ), and its width variations may indicate an eccentricity higher than ~0.005. We fit a tri-axial shape to Chariklo's detections over 11 occultations, and determine that Chariklo is consistent with an ellipsoid with semi-axes of 143.8-1.5+1.4, 135.2-2.8+1.4, and 99.1-2.7+5.4 km. Ultimately, we provided seven astrometric positions at a milliarcsecond accuracy level, based on Gaia EDR3, and use it to improve Chariklo's ephemeris.Fil: Morgado, B.E.. Centre National de la Recherche Scientifique. Observatoire de Paris; Francia. Ministério de Ciencia, Tecnologia e Innovacao. Observatorio Nacional; BrasilFil: Sicardy, Bruno. Centre National de la Recherche Scientifique. Observatoire de Paris; FranciaFil: Braga Ribas, Felipe. Ministério de Ciencia, Tecnologia e Innovacao. Observatorio Nacional; Brasil. Centre National de la Recherche Scientifique. Observatoire de Paris; Francia. Universidade Tecnologia Federal do Parana; BrasilFil: Desmars, Josselin. Centre National de la Recherche Scientifique. Observatoire de Paris; FranciaFil: Gomes Júnior, Altair Ramos. Universidade de Sao Paulo; BrasilFil: Bérard, D.. Centre National de la Recherche Scientifique. Observatoire de Paris; FranciaFil: Leiva, Rodrigo. Universidad de Chile; Chile. Centre National de la Recherche Scientifique. Observatoire de Paris; FranciaFil: Vieira Martins, Roberto. Ministério de Ciencia, Tecnologia e Innovacao. Observatorio Nacional; Brasil. Universidade Federal do Rio de Janeiro; BrasilFil: Benedetti Rossi, G.. Centre National de la Recherche Scientifique. Observatoire de Paris; Francia. Universidade Federal de Sao Paulo; BrasilFil: Santos Sanz, Pablo. Ministério de Ciencia, Tecnologia e Innovacao. Observatorio Nacional; BrasilFil: Camargo, Julio Ignacio Bueno. Ministério de Ciencia, Tecnologia e Innovacao. Observatorio Nacional; BrasilFil: Duffard, R.. Universidade Federal do Rio de Janeiro; BrasilFil: Rommel, F.L.. Ministério de Ciencia, Tecnologia e Innovacao. Observatorio Nacional; BrasilFil: Assafin, M.. Centre National de la Recherche Scientifique. Observatoire de Paris; FranciaFil: Boufleur, R.C.. Universidad Nacional de Córdoba; ArgentinaFil: Colas, F.. Ministério de Ciencia, Tecnologia e Innovacao. Observatorio Nacional; BrasilFil: Kretlow, Mike. Ministério de Ciencia, Tecnologia e Innovacao. Observatorio Nacional; BrasilFil: Beisker, W.. University of North Carolina; Estados UnidosFil: Sfair, Rafael. Centre National de la Recherche Scientifique. Observatoire de Paris; FranciaFil: Snodgrass, Colin. University of Edinburgh; Reino UnidoFil: Morales, N.. Pontificia Universidad Católica de Chile; Chile. Universidad Católica de Chile; ChileFil: Fernández Valenzuela, E.. Pontificia Universidad Católica de Chile; Chile. Universidad Católica de Chile; ChileFil: Amaral, L.S.. Massachusetts Institute of Technology; Estados UnidosFil: Amarante, A.. Ministério de Ciencia, Tecnologia e Innovacao. Observatorio Nacional; BrasilFil: Artola, R.A.. Centre National de la Recherche Scientifique. Observatoire de Paris; FranciaFil: Backes, M.. Universidad Nacional de Córdoba; ArgentinaFil: Bath, K. L.. University of North Carolina; Estados UnidosFil: Bouley, S.. University of St. Andrews; Reino UnidoFil: Garcia Lambas, Diego Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; ArgentinaFil: Schneiter, Ernesto Matías. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Ingeniería Económica y Legal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentin

    Single-cell transcriptomes from human kidneys reveal the cellular identity of renal tumors.

    Get PDF
    Messenger RNA encodes cellular function and phenotype. In the context of human cancer, it defines the identities of malignant cells and the diversity of tumor tissue. We studied 72,501 single-cell transcriptomes of human renal tumors and normal tissue from fetal, pediatric, and adult kidneys. We matched childhood Wilms tumor with specific fetal cell types, thus providing evidence for the hypothesis that Wilms tumor cells are aberrant fetal cells. In adult renal cell carcinoma, we identified a canonical cancer transcriptome that matched a little-known subtype of proximal convoluted tubular cell. Analyses of the tumor composition defined cancer-associated normal cells and delineated a complex vascular endothelial growth factor (VEGF) signaling circuit. Our findings reveal the precise cellular identities and compositions of human kidney tumors

    Checklist of mammals from Mato Grosso do Sul, Brazil

    Full text link
    corecore