198 research outputs found

    Two-photon photopolymerization directly initiated by spiropyran photochromic molecules

    Get PDF
    Here, we report the ability of spiropyrans to initiate two-photon polymerization (TPP) for the first time in the literature. The comparison and synergies between the spiropyran photochromic molecule of interest, namely 6-nitro-BIPS, and well-known photoinitiators of radical photopolymerization have been studied. The spiropyran (SPy) molecule can initiate TPP in the presence of trifunctional acrylic monomers and create true 3D structures. The comparison with Irgacure 819, a well-known Type-I photoinitiator, shows that SPy has a comparable capability for TPP. In addition, the combination of SPy with methyl diethanolamine increased the reactivity of both one- and two-photon polymerizations. In the last section, we discuss which SPy isomer is the active photochromic species capable of generating radicals for initiating two-photon polymerization

    Plasmon resonance optical tuning based on photosensitive composite structures

    Get PDF
    This paper reports a numerical investigation of a periodic metallic structure sandwiched between two quartz plates. The volume comprised between the quartz plates and the metallic structure is infiltrated by a mixture of azo-dye-doped liquid crystal. The exposure to a low power visible light beam modifies the azo dye molecular configuration, thus allowing the wavelength shift of the resonance of the system. The wavelength shift depends on the geometry of the periodic structure and it also depends on the intensity of the visible light beam

    Nanoporous plasmonic metamaterials

    Get PDF
    We review different routes for the generation of nanoporous metallic foams and films exhibiting well-defined pore size and short-range order. Dealloying and templating allows the generation of both two- and three-dimensional structures which promise a well defined plasmonic response determined by material constituents and porosity. Viewed in the context of metamaterials, the ease of fabrication of samples covering macroscopic dimensions is highly promising, and suggests more in-depth investigations of the plasmonic and photonic properties of this material system for photonic applications

    Label-Free Optical Single-Molecule Micro- and Nanosensors

    Get PDF
    This is the author accepted manuscript. The final version is available from Wiley via the DOI in this recordLabel-free optical sensor systems have emerged that exhibit extraordinary sensitivity for detecting physical, chemical, and biological entities at the micro/nanoscale. Particularly exciting is the detection and analysis of molecules, on miniature optical devices that have many possible applications in health, environment, and security. These micro- and nanosensors have now reached a sensitivity level that allows for the detection and analysis of even single molecules. Their small size enables an exceedingly high sensitivity, and the application of quantum optical measurement techniques can allow the classical limits of detection to be approached or surpassed. The new class of label-free micro- and nanosensors allows dynamic processes at the single-molecule level to be observed directly with light. By virtue of their small interaction length, these micro- and nanosensors probe light–matter interactions over a dynamic range often inaccessible by other optical techniques. For researchers entering this rapidly advancing field of single-molecule micro- and nanosensors, there is an urgent need for a timely review that covers the most recent developments and that identifies the most exciting opportunities. The focus here is to provide a summary of the recent techniques that have either demonstrated label-free single-molecule detection or claim single-molecule sensitivity.Living Systems Institute, University of Exete

    Diffusion Raman exaltée de surface (aspects fondamentaux et détection de la molécule unique)

    No full text
    Au cours des deux derniĂšres dĂ©cennies, il y a eu un intĂ©rĂȘt accru pour la recherche de nouveaux dispositifs de type capteurs pour la dĂ©tection de trĂšs petites quantitĂ©s de molĂ©cules, par exemple, d'intĂ©rĂȘt biologique. Les critĂšres importants de tels capteurs sont principalement la grande sensibilitĂ© et la sĂ©lectivitĂ©. Dans ce contexte, la diffusion Raman exaltĂ©e de surface (DRES) est considĂ©rĂ©e comme une technique spectroscopique trĂšs sensible et spĂ©cifique pour dĂ©tecter la signature vibrationnelle de molĂ©cules, Ă  condition que celles-ci soient absorbĂ©es Ă  la surface de nanoparticules mĂ©talliques tels que l'or, l'argent ou le cuivre. De telles nanoparticules prĂ©sentent une rĂ©sonance plasmon de surface localisĂ©e. Les nanoparticules mĂ©talliques peuvent ĂȘtre fabriquĂ©es par lithographie par nanosphĂšre (LN), par lithographie par faisceau d'Ă©lectrons (LFE), et par synthĂšse chimique en solution acqueuse. Les mĂ©thodes lithographiques, LN et LFE, permettent de dĂ©finir prĂ©cisĂ©ment la gĂ©omĂ©trie de la particule. Cependant, l'Ă©tape d'Ă©vaporation du mĂ©tal fournit une structure mĂ©tallique polycristalline, contrairement Ă  la plupart des particules monocristallines fabriquĂ©es par synthĂšse chimique. L'influence de la structure cristalline et de la rugositĂ© de la surface de nanoparticules mĂ©talliques sur leurs propriĂ©tĂ©s optiques reste ainsi une question ouverte, alors que son impact a Ă©tĂ© clairement Ă©tabli dans certains cas, par la comparaison de structures fabriquĂ©es par synthĂšse chimique et LFE. Dans ce travail, nous allons prĂ©senter une Ă©tude dĂ©taillĂ©e sur l'influence des nano-rugositĂ©s de surface de nanoparticules fabriquĂ©es par lithographie lectronique sur leurs propriĂ©tĂ©s optiques (sondĂ© par spectroscopie d'extinction UV-visible), et sur leur rĂ©ponse optique en champ proche par effet DRES. Bien que les Ă©chantillons lithographiques soient de trĂšs bons modĂšles pour l'Ă©tude des mĂ©canismes DRES, ils ne sont pas le meilleur candidat pour la dĂ©tection de molĂ©cules uniques. Pour ĂȘtre en mesure de dĂ©tecter quelques molĂ©cules, voire la molĂ©cule unique, celles-ci doivent ĂȘtre situĂ©es Ă  des endroits de forte exaltation du champ Ă©lectrique, dits points chauds. Les points chauds sont par nature, trĂšs inhomogĂšnes. GĂ©nĂ©ralement moins de 1 % des molĂ©cules sont observĂ©s, ce qui n'est pas adaptĂ© pour les applications de dĂ©tection. Dans ce travail, nous proposons une stratĂ©gie, basĂ© sur l'adsorption sĂ©lective de la molĂ©cule cible uniquement sur les points chauds, qui nous permet de montrer qu'il est possible de faire de la dĂ©tection de la molĂ©cule unique par effet DRES.Over the two last decades, there has been an increased interest in finding new devices that provide ultrasensitive sensors detection of very small amounts of molecules. Important criteria on such sensors mainly deal with sensitivity and selectivity. In this context, Surface enhanced Raman scattering (SERS) is considered as a very sensitive and selective technique for the detection of the vibrational signature of the molecules provided they are adsorbed at the surface of metallic nanoparticles such as gold, silver or copper. Such kind of nanoparticles differs strongly from the respective bulk material in their optical response for they can exhibit localized surface plasmon resonance (LSPR). Fabrication methods for metal nanoparticles include nanosphere lithography (NL), electron beam lithography (EBL) and the chemical synthesis in liquid media. The lithographie methods, NL and EBL, employ a masking structure to first define the geometry of the nanoparticles that are then grown by, e.g., vacuum deposition of the metal. This process results in a polycrystalline metal structure, in contrast to the mostly single-crystalline particles fabricated by chemical synthesis. The influence of the crystalline structure and surface roughness of metal nanoparticles on their optical properties remains however to some extent a matter of speculation, while its drastic impact was made clear in some cases by the comparison between chernically synthesized and EBL fabricated structures. In this work, we will present a detailed study on the influence of the nanometric surface roughness (NSR) on the far-field optical response of "realistic" lithographie particles, probed by UV-visible extinction spectroscopy, and the near-field response monitored by SERS intensity. Although the lithographie samples are very good models for the investigation of the SERS mechanisms, they are not the best candidate when single (or few) molecules detection is required. To be able to detect only a few molecules, they have to be located at the position of highest enhancements, so called hot-spots (HS). HS are by nature, very inhomogeneous. As a result, typically less than 1% of molecules are observed, which is of course not suitable for sensing applications. In this work, we propose a simple scheme based on selective adsorption of the analyte at the hot-spots only, which in principle allows the detection of every single target molecules.PARIS7-BibliothĂšque centrale (751132105) / SudocSudocFranceF
    • 

    corecore