251 research outputs found

    Dependence of Variational Perturbation Expansions on Strong-Coupling Behavior. Inapplicability of delta-Expansion to Field Theory

    Get PDF
    We show that in applications of variational theory to quantum field theory it is essential to account for the correct Wegner exponent omega governing the approach to the strong-coupling, or scaling limit. Otherwise the procedure either does not converge at all or to the wrong limit. This invalidates all papers applying the so-called delta-expansion to quantum field theory.Comment: Author Information under http://www.physik.fu-berlin.de/~kleinert/institution.html . Latest update of paper (including all PS fonts) at http://www.physik.fu-berlin.de/~kleinert/34

    Radiative Lifetimes of Single Excitons in Semiconductor Quantum Dots- Manifestation of the Spatial Coherence Effect

    Full text link
    Using time correlated single photon counting combined with temperature dependent diffraction limited confocal photoluminescence spectroscopy we accurately determine, for the first time, the intrinsic radiative lifetime of single excitons confined within semiconductor quantum dots. Their lifetime is one (two) orders of magnitude longer than the intrinsic radiative lifetime of single excitons confined in semiconductor quantum wires (wells) of comparable confining dimensions. We quantitatively explain this long radiative time in terms of the reduced spatial coherence between the confined exciton dipole moment and the radiation electromagnetic field.Comment: 4 pages, 3 figure

    Looking Beyond Inflationary Cosmology

    Full text link
    In spite of the phenomenological successes of the inflationary universe scenario, the current realizations of inflation making use of scalar fields lead to serious conceptual problems which are reviewed in this lecture. String theory may provide an avenue towards addressing these problems. One particular approach to combining string theory and cosmology is String Gas Cosmology. The basic principles of this approach are summarized.Comment: invited talk at "Theory Canada 1" (Univ. of British Columbia, Vancouver, Canada, June 2 - 4, 2005) (references updated

    Supersymmetry Without Prejudice at the LHC

    Full text link
    The discovery and exploration of Supersymmetry in a model-independent fashion will be a daunting task due to the large number of soft-breaking parameters in the MSSM. In this paper, we explore the capability of the ATLAS detector at the LHC (s=14\sqrt s=14 TeV, 1 fb1^{-1}) to find SUSY within the 19-dimensional pMSSM subspace of the MSSM using their standard transverse missing energy and long-lived particle searches that were essentially designed for mSUGRA. To this end, we employ a set of 71\sim 71k previously generated model points in the 19-dimensional parameter space that satisfy all of the existing experimental and theoretical constraints. Employing ATLAS-generated SM backgrounds and following their approach in each of 11 missing energy analyses as closely as possible, we explore all of these 7171k model points for a possible SUSY signal. To test our analysis procedure, we first verify that we faithfully reproduce the published ATLAS results for the signal distributions for their benchmark mSUGRA model points. We then show that, requiring all sparticle masses to lie below 1(3) TeV, almost all(two-thirds) of the pMSSM model points are discovered with a significance S>5S>5 in at least one of these 11 analyses assuming a 50\% systematic error on the SM background. If this systematic error can be reduced to only 20\% then this parameter space coverage is increased. These results are indicative that the ATLAS SUSY search strategy is robust under a broad class of Supersymmetric models. We then explore in detail the properties of the kinematically accessible model points which remain unobservable by these search analyses in order to ascertain problematic cases which may arise in general SUSY searches.Comment: 69 pages, 40 figures, Discussion adde

    On the nature of the finite-temperature transition in QCD

    Full text link
    We discuss the nature of the finite-temperature transition in QCD with N_f massless flavors. Universality arguments show that a continuous (second-order) transition must be related to a 3-D universality class characterized by a complex N_f X N_f matrix order parameter and by the symmetry-breaking pattern [SU(N_f)_L X SU(N_f)_R]/Z(N_f)_V -> SU(N_f)_V/Z(N_f)_V, or [U(N_f)_L X U(N_f)_R]/U(1)_V -> U(N_f)_V/U(1)_V if the U(1)_A symmetry is effectively restored at T_c. The existence of any of these universality classes requires the presence of a stable fixed point in the corresponding 3-D Phi^4 theory with the expected symmetry-breaking pattern. Otherwise, the transition is of first order. In order to search for stable fixed points in these Phi^4 theories, we exploit a 3-D perturbative approach in which physical quantities are expanded in powers of appropriate renormalized quartic couplings. We compute the corresponding Callan-Symanzik beta-functions to six loops. We also determine the large-order behavior to further constrain the analysis. No stable fixed point is found, except for N_f=2, corresponding to the symmetry-breaking pattern [SU(2)_L X SU(2)_R]/Z(2)_V -> SU(2)_V/Z(2)_V equivalent to O(4) -> O(3). Our results confirm and put on a firmer ground earlier analyses performed close to four dimensions, based on first-order calculations in the framework of the epsilon=4-d expansion. These results indicate that the finite-temperature phase transition in QCD is of first order for N_f>2. A continuous transition is allowed only for N_f=2. But, since the theory with symmetry-breaking pattern [U(2)_L X U(2)_R]/U(1)_V -> U(2)_V/U(1)_V does not have stable fixed points, the transition can be continuous only if the effective breaking of the U(1)_A symmetry is sufficiently large.Comment: 30 pages, 3 figs, minor correction

    Observation of a 1750 MeV/c^2 Enhancement in the Diffractive Photoproduction of K^+K^-

    Get PDF
    Using the FOCUS spectrometer with photon beam energies between 20 and 160 \gev, we confirm the existence of a diffractively photoproduced enhancement in K+KK^+K^- at 1750 \mevcc with nearly 100 times the statistics of previous experiments. Assuming this enhancement to be a single resonance with a Breit-Wigner mass shape, we determine its mass to be 1753.5±1.5±2.31753.5\pm 1.5\pm 2.3 \mevcc and its width to be 122.2±6.2±8.0122.2\pm 6.2\pm 8.0 \mevcc. We find no corresponding enhancement at 1750 \mevcc in KKK^*K, and again neglecting any possible interference effects we place limits on the ratio Γ(X(1750)KK)/Γ(X(1750)K+K)\Gamma (X(1750) \to K^*K)/\Gamma (X(1750) \to K^+K^-). Our results are consistent with previous photoproduction experiments, but, because of the much greater statistics, challenge the common interpretation of this enhancement as the ϕ(1680)\phi (1680) seen in e+ee^+e^- annihilation experiments.Comment: 10 pages, 5 figure

    Search for Rare and Forbidden 3-body Di-muon Decays of the Charmed Mesons D+ and Ds+

    Full text link
    Using a high statistics sample of photo-produced charm particles from the FOCUS experiment at Fermilab, we report results of a search for eight rare and Standard-Model-forbidden decays: D+, Ds+ > h+/- muon-/+ muon+ (with h=pion or Kaon). Improvement over previous results by a factor of 1.7--14 is realized. Our branching ratio upper limit D+ > pion+ muon- muon+ of 8.8E-6 at the 90% C.L. is below the current MSSM R-Parity violating constraint.Comment: 17 pages, 7 figure file

    Measurement of spin correlation in ttbar production using dilepton final states

    Get PDF
    We measure the correlation between the spin of the top quark and the spin of the anti-top quark in (ttbar -> W+ W- b bbar -> l+ nu b l- nubar bbar) final states produced in ppbar collisions at a center of mass energy sqrt(s)=1.96 TeV, where l is an electron or muon. The data correspond to an integrated luminosity of 5.4 fb-1 and were collected with the D0 detector at the Fermilab Tevatron collider. The correlation is extracted from the angles of the two leptons in the t and tbar rest frames, yielding a correlation strength C= 0.10^{+0.45}_{-0.45}, in agreement with the NLO QCD prediction within two standard deviations, but also in agreement with the no correlation hypothesis.Comment: 10 pages, 3 figures, submitted to PL
    corecore