446 research outputs found

    The Calculus of Committee Composition

    Get PDF
    Modern institutions face the recurring dilemma of designing accurate evaluation procedures in settings as diverse as academic selection committees, social policies, elections, and figure skating competitions. In particular, it is essential to determine both the number of evaluators and the method for combining their judgments. Previous work has focused on the latter issue, uncovering paradoxes that underscore the inherent difficulties. Yet the number of judges is an important consideration that is intimately connected with the methodology and the success of the evaluation. We address the question of the number of judges through a cost analysis that incorporates the accuracy of the evaluation method, the cost per judge, and the cost of an error in decision. We associate the optimal number of judges with the lowest cost and determine the optimal number of judges in several different scenarios. Through analytical and numerical studies, we show how the optimal number depends on the evaluation rule, the accuracy of the judges, the (cost per judge)/(cost per error) ratio. Paradoxically, we find that for a panel of judges of equal accuracy, the optimal panel size may be greater for judges with higher accuracy than for judges with lower accuracy. The development of any evaluation procedure requires knowledge about the accuracy of evaluation methods, the costs of judges, and the costs of errors. By determining the optimal number of judges, we highlight important connections between these quantities and uncover a paradox that we show to be a general feature of evaluation procedures. Ultimately, our work provides policy-makers with a simple and novel method to optimize evaluation procedures

    Search for stealth supersymmetry in final states with two photons, jets, and low missing transverse momentum in proton-proton collisions at √s = 13 TeV

    Get PDF

    Measurement of the Higgs boson width and evidence of its off-shell contributions to ZZ production

    Get PDF
    Since the discovery of the Higgs boson in 2012, detailed studies of its properties have been ongoing. Besides its mass, its width—related to its lifetime—is an important parameter. One way to determine this quantity is to measure its off-shell production, where the Higgs boson mass is far away from its nominal value, and relating it to its on-shell production, where the mass is close to the nominal value. Here we report evidence for such off-shell contributions to the production cross-section of two Z bosons with data from the CMS experiment at the CERN Large Hadron Collider. We constrain the total rate of the off-shell Higgs boson contribution beyond the Z boson pair production threshold, relative to its standard model expectation, to the interval [0.0061, 2.0] at the 95% confidence level. The scenario with no off-shell contribution is excluded at a p-value of 0.0003 (3.6 standard deviations). We measure the width of the Higgs boson as Γ\GammaH_H=3.2−1.7+2.4^{+2.4}_{−1.7}MeV, in agreement with the standard model expectation of 4.1 MeV. In addition, we set constraints on anomalous Higgs boson couplings to W and Z boson pairs

    Inclusive and differential cross section measurements of single top quark production in association with a Z boson in proton-proton collisions at √s = 13 TeV

    Get PDF
    Inclusive and differential cross sections of single top quark production in association with a Z boson are measured in proton-proton collisions at a center-of-mass energy of 13 TeV with a data sample corresponding to an integrated luminosity of 138 fb−1 recorded by the CMS experiment. Events are selected based on the presence of three leptons, electrons or muons, associated with leptonic Z boson and top quark decays. The measurement yields an inclusive cross section of 87.9−7.3+7.5(stat)−6.0+7.3(syst) fb for a dilepton invariant mass greater than 30 GeV, in agreement with standard model (SM) calculations and represents the most precise determination to date. The ratio between the cross sections for the top quark and the top antiquark production in association with a Z boson is measured as 2.37−0.42+0.56(stat)−0.13+0.27(syst). Differential measurements at parton and particle levels are performed for the first time. Several kinematic observables are considered to study the modeling of the process. Results are compared to theoretical predictions with different assumptions on the source of the initial-state b quark and found to be in agreement, within the uncertainties. Additionally, the spin asymmetry, which is sensitive to the top quark polarization, is determined from the differential distribution of the polarization angle at parton level to be 0.54 ± 0.16 (stat) ± 0.06 (syst), in agreement with SM predictions. [Figure not available: see fulltext.

    Search for new particles in an extended Higgs sector with four b quarks in the final state at √s = 13 TeV

    Get PDF
    A search for a massive resonance X decaying to a pair of spin-0 bosons ϕ that themselves decay to pairs of bottom quarks, is presented. The analysis is restricted to the mass ranges from 25 to 100 GeV and from 1 to 3 TeV. For these mass ranges, the decay products of each ϕ boson are expected to merge into a single large-radius jet. Jet substructure and flavor identification techniques are used to identify these jets. The search is based on CERN LHC proton-proton collision data at , collected with the CMS detector in 2016–2018, corresponding to an integrated luminosity of 138 . Model-specific limits, where the two new particles arise from an extended Higgs sector, are set on the product of the production cross section and branching fraction for as a function of the resonances' masses, where both the and branching fractions are assumed to be 100%. These limits are the first of their kind on this process, ranging between 30 and 1 fb at 95% confidence level for the considered mass ranges

    Measurement of double-parton scattering in inclusive production of four jets with low transverse momentum in proton-proton collisions at root s=13 TeV

    Get PDF
    A measurement of inclusive four-jet production in proton-proton collisions at a center-of-mass energy of 13 TeV is presented. The transverse momenta of jets within vertical bar eta vertical bar 4.7 are required to exceed 35, 30, 25, and 20 GeV for the first-, second-, third-, and fourth-leading jet, respectively. Differential cross sections are measured as functions of the jet transverse momentum, jet pseudorapidity, and several other observables that describe the angular correlations between the jets. The measured distributions show sensitivity to different aspects of the underlying event, parton shower modeling, and matrix element calculations. In particular, the interplay between angular correlations caused by parton shower and double-parton scattering contributions is shown to be important. The double-parton scattering contribution is extracted by means of a template fit to the data, using distributions for single-parton scattering obtained from Monte Carlo event generators and a double-parton scattering distribution constructed from inclusive single-jet events in data. The effective double-parton scattering cross section is calculated and discussed in view of previous measurements and of its dependence on the models used to describe the single-parton scattering background

    Electron and photon reconstruction and identification with the CMS experiment at the CERN LHC

    Get PDF
    The performance is presented of the reconstruction and identification algorithms for electrons and photons with the CMS experiment at the LHC. The reported results are based on proton-proton collision data collected at a center-of-mass energy of 13 TeV and recorded in 2016-2018, corresponding to an integrated luminosity of 136 fb(-1). Results obtained from lead-lead collision data collected at root S-NN = 5.02 TeV are also presented. Innovative techniques are used to reconstruct the electron and photon signals in the detector and to optimize the energy resolution. Events with electrons and photons in the final state are used to measure the energy resolution and energy scale uncertainty in the recorded events. The measured energy resolution for electrons produced in Z boson decays in proton-proton collision data ranges from 2 to 5%, depending on electron pseudorapidity and energy loss through bremsstrahlung in the detector material. The energy scale in the same range of energies is measured with an uncertainty smaller than 0.1 (0.3)% in the barrel (endcap) region in proton-proton collisions and better than 1(3)% in the barrel (endcap) region in heavy ion collisions. The timing resolution for electrons from Z boson decays with the full 2016-2018 proton-proton collision data set is measured to be 200 ps.Peer reviewe

    Constraints on the Initial State of Pb-Pb Collisions via Measurements of Z-Boson Yields and Azimuthal Anisotropy at root s(NN)=5.02 TeV

    Get PDF
    The CMS experiment at the LHC has measured the differential cross sections of Z bosons decaying to pairs of leptons, as functions of transverse momentum and rapidity, in lead-lead collisions at a nucleon-nucleon center-of-mass energy of 5.02 TeV. The measured Z boson elliptic azimuthal anisotropy coefficient is compatible with zero, showing that Z bosons do not experience significant final-state interactions in the medium produced in the collision. Yields of Z bosons are compared to Glauber model predictions and are found to deviate from these expectations in peripheral collisions, indicating the presence of initial collision geometry and centrality selection effects. The precision of the measurement allows, for the first time, for a data-driven determination of the nucleon-nucleon integrated luminosity as a function of lead-lead centrality, thereby eliminating the need for its estimation based on a Glauber model.Peer reviewe

    Measurement of the top quark Yukawa coupling from tt ̄ kinematic distributions in the dilepton final state in proton-proton collisions at s=13 TeV

    Get PDF
    A measurement of the Higgs boson Yukawa coupling to the top quark is presented using proton-proton collision data at s=13 TeV, corresponding to an integrated luminosity of 137 fb-1, recorded with the CMS detector. The coupling strength with respect to the standard model value, Yt, is determined from kinematic distributions in tt ̄ final states containing ee, ΌΌ, or eÎŒ pairs. Variations of the Yukawa coupling strength lead to modified distributions for tt ̄ production. In particular, the distributions of the mass of the tt ̄ system and the rapidity difference of the top quark and antiquark are sensitive to the value of Yt. The measurement yields a best fit value of Yt=1.16-0.35+0.24, bounding Yt<1.54 at a 95% confidence level

    Measurement of differential t(t)over-bar production cross sections in the full kinematic range using lepton plus jets events from proton-proton collisions at root s=13 TeV

    Get PDF
    Measurements of differential and double-differential cross sections of top-quark pair (t (t) over bar) production arc presented in the lepton + jets channels with a single electron or muon and jets in the final state. The analysis combines for the first time signatures of top quarks with low transverse momentum p(T), where the top-quark decay products can be identified as separated jets and isolated leptons, and with high p(T), where the decay products are collimated and overlap. The measurements arc based on proton-proton collision data at is - = 13 TeV collected by the CMS experiment at the LHC, corresponding to an integrated luminosity of 137 fb(-1). The cross sections are presented at the parton and particle levels, where the latter minimizes extrapolations based on theoretical assumptions. Most of the measured differential cross sections are well described by standard model predictions with the exception of some double-differential distributions. The inclusive t (t) over bar production cross section is measured to be sigma(t (t) over bar) = 791 +/- 25 pb, which constitutes the most precise measurement in the lepton + jets channel to date.Peer reviewe
    • 

    corecore