500 research outputs found

    High-precision measurement of the hypertriton lifetime and Λ-separation energy exploiting ML algorithms with ALICE at the LHC.

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Beyond alpha power: EEG spatial and spectral gradients robustly stratify disorders of consciousness.

    Full text link
    peer reviewedNeurophysiological markers can overcome the limitations of behavioural assessments of Disorders of Consciousness (DoC). EEG alpha power emerged as a promising marker for DoC, although long-standing literature reported alpha power being sustained during anesthetic-induced unconsciousness, and reduced during dreaming and hallucinations. We hypothesized that EEG power suppression caused by severe anoxia could explain this conflict. Accordingly, we split DoC patients (n = 87) in postanoxic and non-postanoxic cohorts. Alpha power was suppressed only in severe postanoxia but failed to discriminate un/consciousness in other aetiologies. Furthermore, it did not generalize to an independent reference dataset (n = 65) of neurotypical, neurological, and anesthesia conditions. We then investigated EEG spatio-spectral gradients, reflecting anteriorization and slowing, as alternative markers. In non-postanoxic DoC, these features, combined in a bivariate model, reliably stratified patients and indexed consciousness, even in unresponsive patients identified as conscious by an independent neural marker (the Perturbational Complexity Index). Crucially, this model optimally generalized to the reference dataset. Overall, alpha power does not index consciousness; rather, its suppression entails diffuse cortical damage, in postanoxic patients. As an alternative, EEG spatio-spectral gradients, reflecting distinct pathophysiological mechanisms, jointly provide a robust, parsimonious, and generalizable marker of consciousness, whose clinical application may guide rehabilitation efforts

    Stratification of unresponsive patients by an independently validated index of brain complexity

    Full text link
    ObjectiveValidating objective, brain-based indices of consciousness in behaviorally unresponsive patients represents a challenge due to the impossibility of obtaining independent evidence through subjective reports. Here we address this problem by first validating a promising metric of consciousnessthe Perturbational Complexity Index (PCI)in a benchmark population who could confirm the presence or absence of consciousness through subjective reports, and then applying the same index to patients with disorders of consciousness (DOCs). MethodsThe benchmark population encompassed 150 healthy controls and communicative brain-injured subjects in various states of conscious wakefulness, disconnected consciousness, and unconsciousness. Receiver operating characteristic curve analysis was performed to define an optimal cutoff for discriminating between the conscious and unconscious conditions. This cutoff was then applied to a cohort of noncommunicative DOC patients (38 in a minimally conscious state [MCS] and 43 in a vegetative state [VS]). ResultsWe found an empirical cutoff that discriminated with 100% sensitivity and specificity between the conscious and the unconscious conditions in the benchmark population. This cutoff resulted in a sensitivity of 94.7% in detecting MCS and allowed the identification of a number of unresponsive VS patients (9 of 43) with high values of PCI, overlapping with the distribution of the benchmark conscious condition. InterpretationGiven its high sensitivity and specificity in the benchmark and MCS population, PCI offers a reliable, independently validated stratification of unresponsive patients that has important physiopathological and therapeutic implications. In particular, the high-PCI subgroup of VS patients may retain a capacity for consciousness that is not expressed in behavior. Ann Neurol 2016;80:718-729Prin "Connage" (Italian Government)European Union (EU)James S. McDonnell Foundation Scholar AwardBelgian National Fund for Scientific ResearchTempleton World Charity FoundationMcDonnell FoundationDistinguished Chair in Consciousness Science at the University of WisconsinUniv Milan, Dept Biomed & Clin Sci L Sacco, Via GB Grassi 74, I-20157 Milan, ItalyFdn Europea Ric Biomed, Milan, ItalyUniv Milano Bicocca, Sch Med & Surg, Dept Hlth Sci, Monza, ItalyUniv Fed Sao Paulo, Inst Sci & Technol, Sao Jose Dos Campos, BrazilFdn Don Gnocchi Onlus, Ist Ricovero & Cura Carattere Sci, Milan, ItalyUniv Wisconsin, Dept Psychiat, Madison, WI 53706 USAUniv Wisconsin, Dept Neurol, Madison, WI 53706 USAUniv Liege, Coma Sci Grp, GIGA, Liege, BelgiumUniv Liege, Dept Neurol, Liege, BelgiumUniv Hosp Liege, Liege, BelgiumGrande Osped Metropolitano Niguarda Ca Granda, Neurocrit Care Unit, Azienda Sociosanit Terr, Dept Neurosci, Milan, ItalyInstitute of Science and Technology, Universidade Federal de São Paulo (UNIFESP), São José dos Campos, BrazilEU: 600806EU: 686764EU: 720270Web of Scienc

    Multiplicity dependence of light (anti-)nuclei production in p–Pb collisions at sNN=5.02 TeV

    Get PDF
    The measurement of the deuteron and anti-deuteron production in the rapidity range −1 < y < 0 as a function of transverse momentum and event multiplicity in p–Pb collisions at √sNN = 5.02 TeV is presented. (Anti-)deuterons are identified via their specific energy loss dE/dx and via their time-of- flight. Their production in p–Pb collisions is compared to pp and Pb–Pb collisions and is discussed within the context of thermal and coalescence models. The ratio of integrated yields of deuterons to protons (d/p) shows a significant increase as a function of the charged-particle multiplicity of the event starting from values similar to those observed in pp collisions at low multiplicities and approaching those observed in Pb–Pb collisions at high multiplicities. The mean transverse particle momenta are extracted from the deuteron spectra and the values are similar to those obtained for p and particles. Thus, deuteron spectra do not follow mass ordering. This behaviour is in contrast to the trend observed for non-composite particles in p–Pb collisions. In addition, the production of the rare 3He and 3He nuclei has been studied. The spectrum corresponding to all non-single diffractive p-Pb collisions is obtained in the rapidity window −1 < y < 0 and the pT-integrated yield dN/dy is extracted. It is found that the yields of protons, deuterons, and 3He, normalised by the spin degeneracy factor, follow an exponential decrease with mass number

    Production of Λ\Lambda and KS0{\rm K}^{0}_{\rm S} in jets in p-Pb collisions at sNN=5\sqrt{s_{\rm NN}} = 5 TeV and pp collisions at s=7\sqrt{s} = 7 TeV

    No full text
    The production of Λ\Lambda baryons and KS0{\rm K}^{0}_{\rm S} mesons (V0{\rm V}^{0} particles) was measured in p-Pb collisions at sNN=5\sqrt{s_{\rm NN}} = 5 TeV and pp collisions at s=7\sqrt{s} = 7 TeV with ALICE at the LHC. The production of these strange particles is studied separately for particles associated with hard scatterings and the underlying event to shed light on the baryon-to-meson ratio enhancement observed at intermediate transverse momentum (pTp_{\rm T}) in high multiplicity pp and p-Pb collisions. Hard scatterings are selected on an event-by-event basis with jets reconstructed with the anti-kTk_{\rm T} algorithm using charged particles. The production of strange particles associated with jets pT,  jetch>10p_{\rm T,\;jet}^{\rm ch}>10 GeV/cc is reported as a function of pTp_{\rm T} in both systems; and its dependence on pTp_{\rm T} with jets pT,  jetch>20p_{\rm T,\;jet}^{\rm ch}>20 GeV/cc and on angular distance from the jet axis, R(V0,  jet)R({\rm V}^{0},\;{\rm jet}), for jets with pT,  jetch>10p_{\rm T,\;jet}^{\rm ch} > 10 GeV/cc are reported in p-Pb collisions. The results are compared with the strange particle production in the underlying event. The Λ/KS0\Lambda/{\rm K}^{0}_{\rm S} ratio associated with jets in p-Pb collisions for R(V0,  jet)<0.4R({\rm V}^{0},\;{\rm jet})<0.4 is consistent with the ratio measured in pp collisions and with the expectation of jets fragmenting in vacuum given by the PYTHIA event generator

    Higher-order correlations between different moments of two flow amplitudes in Pb-Pb collisions at sNN=5.02\sqrt{s_{\rm NN}}=5.02 TeV

    No full text
    International audienceThe correlations between different moments of two flow amplitudes, extracted with the recently developed asymmetric cumulants, are measured in Pb-Pb collisions at sNN=5.02\sqrt{s_{\rm NN}} = 5.02 TeV recorded by the ALICE detector at the LHC. The magnitudes of the measured observables show a dependence on the different moments as well as on the collision centrality, indicating the presence of non-linear response in all even moments up to the eighth. Furthermore, the higher-order asymmetric cumulants show different signatures than the symmetric and lower-order asymmetric cumulants. Comparisons with state-of-the-art event generators using two different parameterizations obtained from Bayesian optimization show differences between data and simulations in many of the studied observables, indicating a need for further tuning of the models behind those event generators. These results provide new and independent constraints on the initial conditions and transport properties of the system created in heavy-ion collisions

    First measurement of the t|t|-dependence of incoherent J/ψ\psi photonuclear production

    No full text
    International audienceThe first measurement of the cross section for incoherent photonuclear production of J/ψ\psi vector meson as a function of the Mandelstam t|t| variable is presented. The measurement was carried out with the ALICE detector at midrapidity, y<0.8|y|<0.8, using ultra-peripheral collisions of Pb nuclei at a centre-of-mass energy per nucleon pair sNN=5.02\sqrt{s_{\mathrm{NN}}} = 5.02 TeV. This rapidity interval corresponds to a Bjorken-xx range (0.3(0.3-1.4)×1031.4)\times 10^{-3}. Cross sections are reported in five t|t| intervals in the range 0.04<t<10.04<|t|<1~GeV2^2 and compared to the predictions of different models. Models that ignore quantum fluctuations of the gluon density in the colliding hadron predict a t|t|-dependence of the cross section much steeper than in data. The inclusion of such fluctuations in the same models provides a better description of the data

    Data-driven precision determination of the material budget in ALICE

    No full text
    The knowledge of the material budget with a high precision is fundamental for measurements of direct photon production using the photon conversion method due to its direct impact on the total systematic uncertainty. Moreover, it influences many aspects of the charged-particle reconstruction performance. In this article, two procedures to determine data-driven corrections to the material-budget description in ALICE simulation software are developed. One is based on the precise knowledge of the gas composition in the Time Projection Chamber. The other is based on the robustness of the ratio between the produced number of photons and charged particles, to a large extent due to the approximate isospin symmetry in the number of produced neutral and charged pions. Both methods are applied to ALICE data allowing for a reduction of the overall material budget systematic uncertainty from 4.5% down to 2.5%. Using these methods, a locally correct material budget is also achieved. The two proposed methods are generic and can be applied to any experiment in a similar fashion.The knowledge of the material budget with a high precision is fundamental for measurements of direct photon production using the photon conversion method due to its direct impact on the total systematic uncertainty. Moreover, it influences many aspects of the charged-particle reconstruction performance. In this article, two procedures to determine data-driven corrections to the material-budget description in ALICE simulation software are developed. One is based on the precise knowledge of the gas composition in the Time Projection Chamber. The other is based on the robustness of the ratio between the produced number of photons and charged particles, to a large extent due to the approximate isospin symmetry in the number of produced neutral and charged pions. Both methods are applied to ALICE data allowing for a reduction of the overall material budget systematic uncertainty from 4.5% down to 2.5%. Using these methods, a locally correct material budget is also achieved. The two proposed methods are generic and can be applied to any experiment in a similar fashion

    Measurement of Non-prompt D0\rm D^0-meson Elliptic Flow in Pb-Pb Collisions at sNN\sqrt{s_{\rm NN}} = 5.02 TeV

    No full text
    International audienceThe elliptic flow (v2v_2) of D0\rm D^0 mesons from beauty-hadron decays (non-prompt D0\rm D^0) was measured in midcentral (30-50%) Pb-Pb collisions at a centre-of-mass energy per nucleon pair sNN\sqrt{s_{\rm NN}} = 5.02 TeV with the ALICE detector at the LHC. The D0\rm D^0 mesons were reconstructed at midrapidity (y<0.8|y|<0.8) from their hadronic decay D0Kπ+\mathrm{D^0 \to K^-\pi^+}, in the transverse momentum interval 2<pT<122 < p_{\rm T} < 12 GeV/cc. The result indicates a positive v2v_2 for non-prompt D0\rm D^0 mesons with a significance of 2.7σ\sigma. The non-prompt D0\rm D^0-meson v2v_2 is lower than that of prompt non-strange D mesons with 3.2σ\sigma significance in 2<pT<82 < p_{\rm T} < 8 GeV/cc, and compatible with the v2v_2 of beauty-decay electrons. Theoretical calculations of beauty-quark transport in a hydrodynamically expanding medium describe the measurement within uncertainties
    corecore