5,795 research outputs found

    A field survey on the indoor environmental quality of the UK primary school classroom

    Get PDF
    The indoor environmental quality (thermal, visual, acoustic and air quality) of the primary school classroom has an impact on pupils' learning and wellbeing. A field study, conducted on random days from 2012 to 2013, was carried out in 203 classrooms from 30 primary schools in 3 areas within the UK. Physical parameters were measured at the site: illuminance, air temperature, relative humidity, CO2 concentration and noise level. It was inferred that: 30.9% classrooms did not meet the proposed standards limiting the level of CO2 levels; light levels were found to be notably low (less than 500lux) because the pedagogy was reliant on smart boards; high noise levels (between 40 to 80dBA) were caused mainly from the adjacent activity areas to the classroom. Based on the findings, practical suggestions are proposed to maximise the environmental benefit to the pupil

    The Holistic Impact of Classroom Spaces on Learning in Specific Subjects

    Get PDF
    The Holistic Evidence and Design (HEAD) study of U.K. primary schools sought to isolate the impact of the physical design of classrooms on the learning progress of pupils aged from 5 to 11 years (U.S. kindergarten to fifth grade). One hundred fifty-three classrooms were assessed and links made to the learning of the 3,766 pupils in them. Through multilevel modeling, the role of physical design was isolated from the influences of the pupils’ characteristics. This article presents analyses for the three main subjects assessed, namely, reading, writing, and math. Variations in the importance of the physical design parameters are revealed for the learning of each subject. In addition to some common factors, such as lighting, a heavy salience for Individualization in relation to math becomes apparent and the importance emerges of Connection for reading and of Links to Nature for writing. Possible explanations are suggested. These results provide a stimulus for additional finesse in practice and for further investigation by researchers

    Multigene Analyses of Monocot Relationships

    Get PDF
    We present an analysis of supra-familial relationships of monocots based on a combined matrix of nuclear I8S and partial 26S rDNA, plastid atpB, matK, ndhF, and rbcL, and mitochondrial atp1 DNA sequences. Results are highly congruent with previous analyses and provide higher bootstrap support for nearly all relationships than in previously published analyses. Important changes to the results of previous work are a well-supported position of Petrosaviaceae as sister to all monocots above Acorales and Alismatales and much higher support for the commelinid clade. For the first time, the spine of the monocot tree has some bootstrap support, although support for paraphyly of liliids is still only low to moderate (79-82%). Dioscoreales and Pandanales are sister taxa (moderately supported, 87- 92%), and Asparagales are weakly supported (79%) as sister to the commelinids. Analysis of just the four plastid genes reveals that addition of data from the other two genomes contributes to generally better support for most clades, particularly along the spine. A new collection reveals that previous material of Petermannia was misidentified, and now Petermanniaceae should no longer be considered a synonym of Colchicaceae. Arachnitis (Corsiaceae) falls into Liliales, but its exact position is not well supported. Sciaphila (Triuridaceae) falls with Pandanales. Trithuria (Hydatellaceae) falls in Poales near Eriocaulaceae, Mayacaceae, and Xyridaceae, but until a complete set of genes are produced for this taxon, its placement will remain problematic. Within the commelinid clade, Dasypogonaceae are sister to Poales and Arecales sister to the rest of the commelinids, but these relationships are only weakly supported

    The pedunculopontine tegmental nucleus - A functional hypothesis from the comparative literature

    Get PDF
    We present data from animal studies showing that the pedunculopontine tegmental nucleus-conserved through evolution, compartmentalized, and with a complex pattern of inputs and outputs-has functions that involve formation and updates of action-outcome associations, attention, and rapid decision making. This is in contrast to previous hypotheses about pedunculopontine function, which has served as a basis for clinical interest in the pedunculopontine in movement disorders. Current animal literature points to it being neither a specifically motor structure nor a master switch for sleep regulation. The pedunculopontine is connected to basal ganglia circuitry but also has primary sensory input across modalities and descending connections to pontomedullary, cerebellar, and spinal motor and autonomic control systems. Functional and anatomical studies in animals suggest strongly that, in addition to the pedunculopontine being an input and output station for the basal ganglia and key regulator of thalamic (and consequently cortical) activity, an additional major function is participation in the generation of actions on the basis of a first-pass analysis of incoming sensory data. Such a function-rapid decision making-has very high adaptive value for any vertebrate. We argue that in developing clinical strategies for treating basal ganglia disorders, it is necessary to take an account of the normal functions of the pedunculopontine. We believe that it is possible to use our hypothesis to explain why pedunculopontine deep brain stimulation used clinically has had variable outcomes in the treatment of parkinsonism motor symptoms and effects on cognitive processing. © 2016 International Parkinson and Movement Disorder Society

    The pedunculopontine tegmental nucleus - A functional hypothesis from the comparative literature

    Get PDF
    We present data from animal studies showing that the pedunculopontine tegmental nucleus-conserved through evolution, compartmentalized, and with a complex pattern of inputs and outputs-has functions that involve formation and updates of action-outcome associations, attention, and rapid decision making. This is in contrast to previous hypotheses about pedunculopontine function, which has served as a basis for clinical interest in the pedunculopontine in movement disorders. Current animal literature points to it being neither a specifically motor structure nor a master switch for sleep regulation. The pedunculopontine is connected to basal ganglia circuitry but also has primary sensory input across modalities and descending connections to pontomedullary, cerebellar, and spinal motor and autonomic control systems. Functional and anatomical studies in animals suggest strongly that, in addition to the pedunculopontine being an input and output station for the basal ganglia and key regulator of thalamic (and consequently cortical) activity, an additional major function is participation in the generation of actions on the basis of a first-pass analysis of incoming sensory data. Such a function-rapid decision making-has very high adaptive value for any vertebrate. We argue that in developing clinical strategies for treating basal ganglia disorders, it is necessary to take an account of the normal functions of the pedunculopontine. We believe that it is possible to use our hypothesis to explain why pedunculopontine deep brain stimulation used clinically has had variable outcomes in the treatment of parkinsonism motor symptoms and effects on cognitive processing. © 2016 International Parkinson and Movement Disorder Society

    Drivers of the microbial metabolic quotient across global grasslands

    Get PDF
    Aim: The microbial metabolic quotient (MMQ; mg CO2-C/mg MBC/h), defined as the amount of microbial CO2 respired (MR; mg CO2-C/kg soil/h) per unit of microbial biomass C (MBC; mg C/kg soil), is a key parameter for understanding the microbial regulation of the carbon (C) cycle, including soil C sequestration. Here, we experimentally tested hypotheses about the individual and interactive effects of multiple nutrient addition (nitrogen + phosphorus + potassium + micronutrients) and herbivore exclusion on MR, MBC and MMQ across 23 sites (five continents). Our sites encompassed a wide range of edaphoclimatic conditions; thus, we assessed which edaphoclimatic variables affected MMQ the most and how they interacted with our treatments. Location: Australia, Asia, Europe, North/South America. Time period: 2015–2016. Major taxa: Soil microbes. Methods: Soils were collected from plots with established experimental treatments. MR was assessed in a 5-week laboratory incubation without glucose addition, MBC via substrate-induced respiration. MMQ was calculated as MR/MBC and corrected for soil temperatures (MMQsoil). Using linear mixed effects models (LMMs) and structural equation models (SEMs), we analysed how edaphoclimatic characteristics and treatments interactively affected MMQsoil. Results: MMQsoil was higher in locations with higher mean annual temperature, lower water holding capacity and lower soil organic C concentration, but did not respond to our treatments across sites as neither MR nor MBC changed. We attributed this relative homeostasis to our treatments to the modulating influence of edaphoclimatic variables. For example, herbivore exclusion, regardless of fertilization, led to greater MMQsoil only at sites with lower soil organic C (< 1.7%). Main conclusions: Our results pinpoint the main variables related to MMQsoil across grasslands and emphasize the importance of the local edaphoclimatic conditions in controlling the response of the C cycle to anthropogenic stressors. By testing hypotheses about MMQsoil across global edaphoclimatic gradients, this work also helps to align the conflicting results of prior studies
    • …
    corecore