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MULTIGENE ANALYSES OF MONOCOT RELATIONSHIPS: A SUMMARY 
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ABSTRACT 

We present an analysis of supra-familial relationships of monocots based on a combined matrix of 
nuclear ISS and partial 26S rONA, plastid atpB, matK, ndhF, and rbcL, and mitochondrial atpl DNA 
sequences. Results are highly congruent with previous analyses and provide higher bootstrap support 
for nearly all relationships than in previously published analyses. Important changes to the results of 
previous work are a well-supported position of Petrosaviaceae as sister to all monocots above Acorales 
and Alismatales and much higher support for the commelinid clade. For the first time, the spine of 
the monocot tree has some bootstrap support, although support for paraphyly of liliids is still only 
low to moderate (79-82%). Dioscoreales and Pandanales are sister taxa (moderately supported, 87-
92%), and Asparagales are weakly supported (79%) as sister to the commelinids. Analysis of just the 
four plastid genes reveals that addition of data from the other two genomes contributes to generally 
better support for most clades, particularly along the spine. A new collection reveals that previous 
material of Petermannia was misidentified, and now Petermanniaceae should no longer be considered 
a synonym of Colchicaceae. Arachnitis (Corsiaceae) falls into Liliales, but its exact position is not 
well supported. Sciaphila (Triuridaceae) falls with Pandanales. Trithuria (Hydatellaceae) falls in Poales 
near Eriocaulaceae, Mayacaceae, and Xyridaceae, but until a complete set of genes are produced for 
this taxon, its placement will remain problematic. Within the commelinid clade, Dasypogonaceae are 
sister to Poales and Arecales sister to the rest of the commelinids, but these relationships are only 
weakly supported. 

Key words: Acorales, Alismatales, Arecales, Asparagales, Commelinales, commelinids, Dioscoreales, 
Liliales, mitochondrial genes, monocot phylogenetics, nuclear ribosomal genes, Pandan
ales, Petrosaviales, plastid genes, Poales, Zingiberales. 

INTRODUCTION 

In the time since the last major conference on monocots 
when results of a three-gene analysis were presented (Chase 
et al. 2000b), additional data have been collected represent
ing two more plastid genes, matK and ndhF, two mitochon
drial genes, atp1 and cob, and a portion of an additional 

Present addresses: 14 Botanical Garden and Museum, Natural His
tory Museum of Denmark, Solvgade 83, Opg. S, DK-1307 Copen
hagen K, Denmark; 15 Division of Biological Sciences, 371 Life Sci
ences Center, University of Missouri, Columbia, Missouri 65211-
7310, USA; 16 Department of Biology, Duke University, Box 90338, 
Durham, North Carolina 27708, USA. 

nuclear ribosomal gene, 26S rDNA (1200 bp at the 5'-end 
of the gene). We present in this paper results of a combined 
analysis of seven genes representing all three genomic com
partments (including 18S rDNA, atpB, and rbcL, plus those 
listed above except for cob, results of which are described 
in Petersen et al. 2006). 

Since the time of the first monocot conference at the Roy
al Botanic Gardens, Kew, in 1993 (Rudall et al. 1995), at
tention has been focused on establishing general relation
ships and developing a phylogenetic classification (APG 
1998) for the monocots. The three conferences have been 
excellent in focusing attention on the gaps at one conference 
and filling many of them by the next. The second conference 
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(Wilson and Morrison 2000) produced the first multigene 
analysis of the monocots (Chase et al. 2000b) and laid the 
framework for the work presented here. The major foci to 
be resolved by adding additional genes were the relation
ships of (i) the former liliid orders that Dahlgren et al. (1985) 
treated as Lilianae and (ii) higher-levels within the comme
linids. Whereas Dahlgren et al. (1985) considered Lilianae 
to be monophyletic, DNA-based analyses have never recov
ered this topology (Chase et al. 1995a, 2000b) and instead 
have indicated that they are a grade relative to the comme
linids, although this pattern has never been associated with 
bootstrap support greater than 50%, even with three genes. 
A combined analysis of rbcL and morphological data (Chase 
et al. 1995b) showed conversely that Lilianae were mono
phyletic, but again without robust internal support. 

Within commelinids, ordinal relationships have been un
clear relative to Dasypogonaceae. In Chase et al. (2000b), 
Zingiberales and Commelinales were sister taxa (with low 
support: 71% bootstrap), but all others were either unre
solved in the strict consensus tree or not supported robustly 
by the bootstrap. It was hoped that by including additional 
data relationships of the liliid and commelinid orders and 
among the commelinids could be better assessed (we use 
these terms instead of lilioids and commelinoids to avoid 
confusion with subfamily names). Additional points of in
terest were to see how sequences from the mitochondrial 
genome compared with those found in the plastid and nu
clear genes previously studied (18S rDNA, atpB, and rbcL) 
and how putatively more rapidly evolving regions such as 
plastid matK and ndhF performed at the highest levels in 
the monocots. Previous work indicated that both these re
gions would do well (Givnish et al. 1999; Fuse and Tamura 
2000). The addition of 26S rDNA seemed logical because 
combining plastid regions and 18S rDNA had increased in
ternal support (Chase et al. 2000a; Soltis et al. 2000), but in 
other cases this region has not been particularly useful (Zanis 
et al. 2002). 

The issue of congruence of different gene regions has 
been approached several different ways. Previous studies 
have demonstrated that although incongruence-as mea
sured by, e.g., the partition homogeneity test-is present, 
direct combination provides greater resolution and higher 
bootstrap percentages (Soltis et al. 1998; Reeves et al. 2001). 
We will not address these issues in depth here, but Petersen 
et al. (2006) do examine this question with respect to the 
two mitochondrial genes, atp 1 and cob. Davis et al. (2004) 
also discussed these issues with respect to atp 1 and rbcL. 
Because the majority of genes analyzed here are plastid (four 
of the seven), we conducted a separate combined analysis 
of these to compare with the combined analysis of all genes. 
The evidence produced by directly combining these genes, 
in spite of the incongruence observed in the patterns when 
each gene or genomic compartment is analyzed separately, 
demonstrates increased internal support for most clades, 
which would be compatible with an hypothesis of sampling 
error (i.e., too few characters to obtain a clear answer) being 
responsible for different patterns when genes are analyzed 
individually rather than incongruence caused by different 
patterns of inheritance or different biases in their patterns of 
molecular evolution. 

There are also undoubtedly extensive differences in line-

age-specific rates in each of these regions (Gaut et al. 1992), 
which could perturb phylogenetic patterns. Nevertheless, 
these differences do not appear to present major problems, 
and the history of monocot molecular phylogenetics has 
been one of consistency of overall results and predictability 
when applied to other questions (e.g., relationships within 
Asparagales and telomere repeat variation; Adams et al. 
2001). Thus in this paper, we will present only combined 
results and dissect the questions of molecular evolution and 
incongruence in greater detail in future publications. 

MATERIALS AND METHODS 

Species used as place-holders for this study are similar to 
those in previous papers (Chase et al. 1995a, 2000b). For 
the newly produced data (since Chase et al. 2000b), we have 
exchanged DNA samples among the participating labs so 
that each gene was amplified from the same genomic DNAs, 
but in a minority of cases this has not happened. We are in 
the process of producing additional new sequences for 18S 
rDNA and atpB so that we have parallel sampling for these 
genes as well, but for the purposes of this paper we have in 
some cases substituted other genera from the same families, 
all of which have been demonstrated in published analyses 
to be monophyletic. This same procedure was used in Soltis 
et al. (2000) and Qiu et al. ( 1999) and has been shown not 
to have a negative effect on results; estimates of familial 
relationships appear to be robust to such substitutions. Be
cause this is a preliminary report, a full table of species 
names, vouchers, and GenBank accession numbers will be 
provided in a future paper to be published elsewhere, but 
the matrices and other voucher information can be obtained 
from the corresponding author (MWC; m.chase@kew.org). 
Methods of sequence production have varied greatly over 
time; primers and protocols can be found in studies of the 
individual genes. A description of the amplification proce
dures and primers for these genes can be found in the fol
lowing references: 18S rDNA (Soltis and Soltis 1998), 26S 
rDNA (Zanis et al. 2002, but we used just 1200 bp at the 
5 '-end, which contained three loop regions considered 
among the most variable in the gene), atpA (Davis et al. 
1998), atpB (Hoot et al. 1995), matK (Johnson and Soltis 
1994; Molvray et al. 2000; Cuenoud et al. 2002; Hilu et al. 
2003), ndhF (Pires and Sytsma 2002; McPherson et al. 
2003), and rbcL (Fay and Chase 1996). 

The combined matrix consists of 141 taxa, 16 of which 
are outgroups selected from results of studies of basal nodes 
in the angiosperms (e.g., Qiu et al. 1999). Amborella Baill. 
(Amborellaceae) was specified as sister to the rest of the taxa 
(i.e., it is the ultimate outgroup). Monocot placeholders were 
selected on the basis of previous large-scale studies (Chase 
et al. 2000b) and include all families now recognized by 
APG (1998) except for Aponogetonaceae, Limnocharitaceae, 
Posidoniaceae, Ruppiaceae, and Scheuchzeriaceae (all small 
families of Alismatales). Some of the most problematic in
group taxa are missing most genes because they are achlo
rophyllous, and this causes problems with estimating their 
relationships and/or bootstrap support for their positions. 
Therefore, we conducted two sets of analyses on the com
bined matrix of all genes, with and without these problem 
taxa: Arachnitis R. A. Philippi (Corsiaceae; missing all plas-
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tid data), Sciaphila Blume (Triuridaceae; missing all plastid 
regions), Thismia Griff., and Burmannia L. (Burmanniaceae; 
the former missing matK and ndhF and the latter missing 
only ndhF). For Trithuria Hook. f. (Hydatellaceae), which 
is photosynthetic, several attempts have been made to am
plify other regions, but the DNA is of poor quality; thus far, 
we have sequenced it for only 18S and 26S rDNA, atp1 and 
rbcL. As mentioned above, we also analyzed an all-plastid 
combined matrix (atpB, matK, ndhF, and rbcL), again with 
these problem taxa excluded. 

Unlike atpB and rbcL, the two new plastid genes, ndhF 
and particularly matK, have insertions and deletions (indels), 
but these were in all cases in triplets, consistent with their 
coding nature. However, in some regions of matK, alignment 
was problematic because of large numbers of unique or rare 
indels, which meant that large amounts of missing data were 
present for the great majority of taxa. We therefore excluded 
these regions from the analyses because including them con
tributed nothing to patterns of relationships. We did not code 
indels as characters to be included in the analysis because it 
would be complicated for a matrix of this size, plus in no 
case did we identify indels marking groups that were not 
already well supported by the bootstrap. 

We analyzed the combined matrix using heuristic searches 
with PAUP* vers. 4.0b10 (Swofford 2001) using the follow
ing strategy: 500 replicates of randomized taxa entries with 
subtree-pruning-regrafting (SPR) swapping and a tree limit 
of twenty trees per replicate to reduce the time spent on 
swapping on suboptimal islands of trees. A second round of 
analysis using these as starting trees was also conducted, and 
we did this with tree-bisection-reconnection (TBR) swapping 
to determine if this more thorough swapping algorithm 
found any additional trees, which it did not. For the plastid
only analysis, we found three islands of equally parsimoni
ous trees (this was determined by using only a single shortest 
tree as a starting tree and finding that we only recovered 12 
trees rather than all 36). We used bootstrapping to estimate 
internal support with 500 replicates of simple-taxon addition, 
again with a limit of 20 trees per replicate and SPR swap
ping. We report all bootstrap percentages greater than 50 that 
are consistent with the strict consensus tree. We show a sin
gle tree (the first one found) to illustrate branch lengths 
(DELTRAN optimization, due to problems with ACCTRAN 
optimization in PAUP* vers. 4.0b10) and indicate which 
groups are not found in the strict consensus tree with arrow
heads. 

RESULTS 

First we will describe the results of the analysis without 
the five problem taxa (Arachnitis, Burmannia, Sciaphila, 
Thismia, and Trithuria) and then indicate where each of 
these is placed and the effect on bootstrap percentages. The 
combined matrix (excluding regions with mostly missing 
data and the five problem taxa) included 11,235 positions, 
of which 7389 positions were variable and 4777 (43%) were 
potentially informative. Comparisons of the contribution of 
each gene to this total will be presented in a future paper. 
The analysis found three shortest trees of 68,434 steps with 
a consistency index (CI; including all positions) of 0.54 and 
a retention index (RI) of 0.48. 

We will not discuss outgroup relationships of the mono
cots in this paper because some important taxa (e.g., eudi
cots) are not included so that a robust assessment of overall 
outgroup relationships of the monocots is not appropriately 
sampled. To describe the tree topology, we will use sister
group language so that terms like "basal" can be avoided; 
nodes can be "basal," but clades cannot be. Furthermore, 
we will use family names, not genera, to describe terminals, 
even though in many cases only up to three genera represent 
large families such as Orchidaceae. Family limits are now 
well characterized within the monocots, so this use is not 
misleading. For comparative purposes, a summary of the 
bootstrap consensus trees from the Chase et al. (2000b) pa
per and this study are presented in Fig. 1. In Fig. 2, 3 we 
show one of the individual trees with bootstrap percentages 
(BP) indicated below the branches, branch lengths above, 
and the node not found in all three trees is marked by an 
arrowhead. The monocots are monophyletic (89 BP; Fig. 2), 
with Acoraceae (100 BP) sister to the rest (excluded from 
their sister clade with 100 BP; this convention for indicating 
sister group relationships will be used throughout this paper). 
Alismatales (100 BP) are then sister to the remainder of 
monocots exclusive of Acoraceae (100 BP), and within the 
former Araceae (100 BP) are sister (99 BP) to Tofieldiaceae 
(100 BP) plus the aquatic clade (100 BP). With this level of 
sampling, the aquatic clade forms two subclades (100 and 
87 BP): (i) Cymodoceaceae sister (78 BP) to Juncaginaceae 
plus Zosteraceae/Potamogetonaceae (100 BP); and (ii) Hy
drocharitaceae sister (<50 BP) to Butomaceae/Alismataceae. 

Petrosaviaceae (100 BP) are sister (95 BP) to the other 
four liliid orders plus commelinids. At the next node, Dios
coreales/Pandanales (87 BP) are sister (BP 77) to Liliales 
(100 BP) plus Asparagales/commelinids (79 BP). Within 
Dioscoreales (99 BP), Nartheciaceae (100 BP) are sister (100 
BP) to Dioscoreaceae. Pandanales are well supported (100 
BP), with Velloziaceae (100 BP) sister (100 BP) to Stemon
aceae (100 BP) plus Pandanaceae (100 BP)/Cyclanthaceae 
(100 BP). 

Within Liliales, Campynemataceae are sister (<50 BP) to 
Melanthiaceae (92 BP); the rest of the order (<50 BP) is 
composed of two groups (61 and 100 BP): (i) Petermanni
aceae sister (100) to Colchicaceae (100 BP) plus Alstroe
meriaceae/Luzuriagaceae (96 BP) and (ii) Smilacaceae sister 
(59 BP) to Philesiaceae/Rhipogonaceae (100 BP) and Lili
aceae (100 BP). 

Within Asparagales (95 BP; Fig. 3), Orchidaceae (100 BP) 
are sister (90 BP) to the rest. At the next node, a clade (85 
BP) with Blandfordiaceae sister (100 BP) to Asteliaceae plus 
Lanariaceae/Hypoxidaceae (100 BP) is sister to the rest (<50 
BP). At the next node, Boryaceae (100 BP) are sister (100 
BP) to the rest, followed by Tecophilaeaceae (54 BP), and 
a clade (<50 BP) in which Doryanthaceae are sister (99 BP) 
to lxioliriaceae!Iridaceae. Xeronemataceae and Xanthorrhoe
aceae s.l. (98 BP) are then successively sister (100, 97 BP) 
to a clade in which Alliaceae s.l. (85 BP) and Asparagaceae 
s.l. (53 BP) are sisters. 

The larger commelinid clade is well supported ( 100 BP), 
and within it two major subclades occur (100 and 58 BP); 
Arecales (Arecaceae; 100 BP) are sister to the rest of the 
commelinids (<50 BP). In the first major subclade, Com
melinales and Zingiberales are sisters (100 BP). Within Zin-
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A. 

*** 90-1 00°/o 
** 75-89o/o 
* 50-74°/o 

Poales 

Arecales 

Zingiberales 

Commelinales 
Dasypogonaceae 

Asparagales 

Pandanales 

Liliales 
Dioscoreales 
Petrosaviaceae 
Alismatales 
Acorales 

B. 
Poales 

Dasypogonaceae 
Zingiberales 

Commelinales 
Arecales 

Asparagales 

Liliales 

Pandanales 

Dioscoreales 
Petrosaviales 

Alismatales 

Acorales 
Fig. lA-B.-Comparison between the bootstrap (50%) consensus trees produced by the (A) three-gene (modified from Chase et a!. 

2000a) and (B) seven-gene (this paper) analyses. Asterisks indicate general range of bootstrap percentages for each marked clade. 

giberales (100 BP), Lowiaceae/Strelitziaceae (100 BP) are 
sister (59 BP) to the rest, to which Heliconiaceae and Mu
saceae are successively sisters (57 and 98 BP, respectively). 
Finally, a well-supported clade (98 BP) has Zingiberaceae/ 
Costaceae (97 BP) sister to Cannaceae/Marantaceae (98 BP). 
In Commelinales (100 BP), there are two subclades (68 and 
53 BP): (i) Commelinaceae (100 BP) sister to Hanguana
ceae, and (ii) Philydraceae sister (77 BP) to Pontederiaceae/ 
Haemodoraceae. 

In the second major commelinid subclade (58 BP), Da
sypogonaceae (100 BP) are sister (100 BP) to Poales. Within 
Poales, Bromeliaceae (100 BP) and Typhaceae (100 BP) are 
successive sisters to the rest (>50, 97 BP), within which 
Rapateaceae are sister to all others (82 BP). The remaining 
Poales form two clades, graminids and cyperids (90 and 76 
BP, respectively). In the graminid clade, there are two sub
clades (69 and 85 BP): (i) Anarthriaceae sister (100 BP) to 
Centrolepidaceae plus Restionaceae (73 BP) and (ii) Flagel
lariaceae and Joinvilleaceae successively (100 and 55 BP, 
respectively) sister to Ecdeiocoleaceae/Poaceae. 

In the cyperid clade, a clade (71 BP) with Eriocaulaceae/ 
Xyridaceae is sister (60 BP) to the rest. The position of May
acaceae is thus weakly supported, but it is sister ( 100 BP) 
to all other members of the cyperid clade (except Eriocau
laceae/Xyridaceae). Thurniaceae (100 BP) are sister (100 
BP) to Juncaceae (100 BP)/Cyperaceae (100 BP). 

In the combined matrix with the problem taxa included, 
there were nine trees of 69,689 steps with a CI = 0.53 and 
RI = 0.47. The strict consensus tree (not shown) is similar 
to that described above and shown in Fig. 2, except that 
Triuridaceae are sister to Velloziaceae in Pandanales (and the 

order has only 74 rather than 100 BP). Corsiaceae are em
bedded in Liliaceae (Liliales), and BP for the latter family 
drops to 83 (down from 100 BP). Hydatellaceae are embed
ded in Burmanniaceae (Dioscoreales), and BP for the order 
drops to less than 50 (down from 100 BP). Burmanniaceae 
(>50 BP) are sister to Dioscoreaceae. If Burmanniaceae are 
excluded from the analysis, then Hydatellaceae are sister to 
Mayacaceae. These taxa for which most of the gene regions 
are missing also have major effects on support far away from 
their positions (not shown); for example, in this analysis the 
commelinid clade dropped from 100 to 61 BP, Poales from 
100 to 79 BP, and Liliales from 100 to 74 BP. 

The combined plastid matrix consisted of 7019 characters, 
of which 5120 were variable and 3547 (50%) were potentially 
parsimony-informative. Analysis produced 36 trees of 54,671 
steps with a CI = 0.56 and RI = 0.49. These 36 trees were 
in three islands of 12 trees each; starting with any one tree 
from each set of 12 only ends up with 12 trees (the definition 
of an island). The three islands vary in the relative positions 
of Anemarrhena Bunge relative to Aphyllanthes L., Alliaceae 
s.l., and the members of Themidaceae/Hyacinthaceae and lr
idaceae!lxioliriaceae relative to Doryanthaceae (all Aspara
gales). In island one, Doryanthaceae are sister to Iridaceae/ 
Ixioliriaceae, Anemarrhena is sister to the rest of Agavaceae 
s.l. (Asparagaceae s.l.), and Aphyllanthes is sister to Allium 
L., which leaves Themidaceae/Hyacinthaceae a sister pair. In 
island two, Doryanthaceae are sister to the larger clade con
taining most of Asparagales, whereas Aphyllanthes is sister to 
Brodiaea Sm. (Themidaceae), and this pair is sister to Ane
marrhena, leaving Scilla L. (Hyacinthaceae) as sister to Aga
vaceae s.l. In the second island, Alliaceae s.l. are intact. In 
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49 
99 

39 

100 

17 

48 
79 

100 

92 

61 
100 

92 
100 

591 
100 

39 
80 

31 

79 
100 

29 239 
100 

I Cyclanthaceae 

Pandanaceae 
Pandanales 

I 
I I Dioscoreaceae 

Nartheciaceae 

Dioscoreales 

Alstroemeriaceae 
Luzuriagaceae 

Colchicaceae 
Petermanniaceae 

Liliaceae 
Smilacaceae 

I 

Philesiaceae Liliales 
Rhipogonaceae 

Melanthiaceae 

Petrosaviales 
Alismataceae 
Butomaceae 
Hydrocharitaceae 
Potamogetonaceae 
Zosteraceae 
Juncaginaceae Alismatales 
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Fig. 2.-A single tree randomly selected from the three equally most-parsimonious trees produced from the combined matrix of all genes 
with the problem taxa removed (see text). The ten basalmost nodes along the spine of the tree are shown. Numbers above branches are 
estimated substitutions (DELTRAN optimization), and numbers below branches are bootstrap percentages. Clades not present in all trees 
are marked with an arrowhead. 

the third island, Anemarrhena is again sister to Agavaceae 
s.l., and Doryanthaceae are sister to the larger clade, whereas 
Scilla is sister to Aphyllanthes!Brodiaea; Alliaceae s.l. are 
again intact. The strict consensus tree (see Fig. 4, 5) was 
nearly identical to that of the combined matrix of all genes 
except that relationships within Asparagaceae/Alliaceae (As
paragales) were less resolved, and Mayacaceae are sister to 
the rest of the cyperid clade rather than being sister to Cy
peraceae/Juncaceaetrhumiaceae as in the combined analysis, 
but their position in the plastid tree received <50 BP. Bro-

meliaceaeffyphaceae are sister taxa (74 BP), whereas in the 
combined analysis of all data they are weakly supported as 
successive sisters to the order. Generally, BPs were lower in 
the plastid-only analysis than the analysis with all data, but 
in some cases BPs were more or less unchanged with the 
additional data; for example, along the spine of the tree from 
the basal node of the monocots up to the node of the com
melinid clade, percentages in the plastid analysis were 96, 95, 
100, 85, 80, 82, and 100 whereas for the combined analysis 
of all genes (without the problem taxa), they were 89, 100, 
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Fig. 3.-The same single tree as in Fig. 2 produced from the combined matrix of all genes with the problem taxa removed (see text). 
The Asparagales/commelinid clades are shown. Numbers above branches are estimated substitutions (DELTRAN optimization), and numbers 
below branches are bootstrap percentages. Clades not present in all trees are marked with an arrowhead. 

100, 95, 77, 79, and 100. In a few other cases, support from 
the plastid combined matrix was somewhat higher, but never 
more than that for the node (along the spine, as above) at 
which Asparagales are sister to the commelinids (plastid 82 
BP, all genes 79 BP). 

DISCUSSION 

Age and Relationships of Monocots to Other Angiosperms 

Based on molecular clock approaches, monocots are the 
first major angiosperm clade to appear. Bremer (2002) dated 

their origin at 134 million years ago (mya), which is much 
older than their first appearance in the fossil record in the 
mid-Cretaceous (Gandolfo et al. 2002) and about the age of 
the oldest angiosperm fossils. Wikstrom et al. (2001) placed 
the origin at 140-155 mya, but their calibration point was 
outside the monocots, whereas that of Bremer (2002), which 
seems more reasonable in terms of the fossil record, was 
within. Our analyses here did not include one of the major 
clades of angiosperms, eudicots, and thus cannot be consid
ered to be a robust assessment of higher-level angiosperm 
relationships. The data for such a study are available, but 
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Fig. 4.-A single tree randomly selected from the 36 equally most-parsimonious trees produced from the combined matrix of all plastid 
genes with the problem taxa removed (see text). The ten basalmost nodes along the spine of the tree are shown. Numbers above branches 
are estimated substitutions (DELTRAN optimization), and numbers below branches are bootstrap percentages. Clades not present in all 
trees are marked with an arrowhead. 

this is the focus of many other efforts, so we did not deem 
it important to include these data in this analysis. Duvall et 
al. (2006) found with Bayesian analyses of combined nuclear 
PHYC, plastid ndhF and rbcL and mitochondrial atpl that 
monocots were sister with high posterior probabilities to the 
magnoliid clade (Canellales, Laurales, Magnoliales, and Pi
perales); Davis et al. (2004) using atpA and rbcL produced 
a similar result, but with low bootstrap support (<55 BP). 
Graham et al. (2006) using just plastid DNA, placed the 

monocots as sister to a clade composed of Ceratophyllaceae 
plus eudicots with 73 BP. Other analyses of higher-level re
lationships with angiosperms have varied as to which clade 
is sister to the monocots, and we do not understand how to 
compare bootstrap percentages to Bayesian posterior prob
abilities. Several studies have indicated that the latter are 
over-inflated estimates of confidence (Suzuki et al. 2002), so 
at present it remains unclear as to whether the Duvall et al. 
(2006) results are reliable. 
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numbers below branches are bootstrap percentages. Clades not present in all trees are marked with an arrowhead. 

All Three Genames Versus Plastid Only 

The tree from all genes combined is clearly similar to the 
patterns observed in the plastid-only results, but at this stage 
there are too few data from the nuclear (one gene and only 
partial sequences for a second) and mitochondrial (one gene) 
genomes to say what the predominant patterns in these 
would be. Most clades with high bootstrap support (greater 
than 90%) in the mitochondrial (Davis et al. 2004) or 18S 
rDNA analyses (Soltis et al. 1998) do not contradict those 

in the combined plastid analysis presented here. The situa
tion with the position of Acarus L. in the Davis et al. (2004) 
paper is complex; in the combined analysis of mitochondrial 
atpA and plastid rbcL Acarus is placed with high bootstrap/ 
jackknife support (95-97%) as sister to the aquatic clade 
(Alismatales s.s.), which is an effect of atpA (Acarus is in 
this same position in the separate analysis of this gene, al
though it is weakly supported). Alismatales s.l. are also only 
weakly supported in Davis et al. (2004). These results are 
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difficult to interpret, and those same data are included here 
without decreasing support produced when the plastid data 
are analyzed alone. Separating sampling errors (too few 
data) from incompatible patterns, whether from biological or 
molecular causes, is notoriously difficult (Huelsenbeck et al. 
1996), and until we have worked more with matrices of more 
genes from each of the genomic compartments, we will not 
be able to robustly address the reasons why individual genes 
do not produce identical patterns. At the least, it is clear that 
adding one mitochondrial and two nuclear genes to the four 
plastid genes does not produce a worse hypothesis of mono
cot relationships in terms of lower internal support, and the 
patterns obtained from all combined analyses of DNA data 
thus far are highly congruent with the results of other studies 
(but see Davis et al. 2004 for another perspective). Thus, 
although doubts may linger about whether direct combina
tion of DNA data from different regions is an appropriate 
method of analysis, the results so far appear to be robust and 
predictive. Therefore, as long as the results of combined 
analysis with genes from all three genomes appear to be 
improvements over their predecessors, this route should con
tinue to be followed. However, performing combined anal
yses should not prevent us from exploring the patterns pro
duced by the individual compartments or the potential causes 
of deviations in pattern, as in Petersen et al. (2006). It is 
also clear that there are problems with the mitochondrial and 
nuclear genes as indicators of relationships for the achloro
phyllous taxa (Burmanniaceae, Corsiaceae, and Triurida
ceae) plus Trithuria (Hydatellaceae), the last of which is 
photosynthetic but which has also been problematic in other 
studies (Bremer 2002; Davis et al. 2004). 

Multigene Analysis of Monocots in 2000 Versus 2005 

The trees presented here (Fig. 1) resolve relationships of 
a number of the major monocot clades, and they provide 
stronger support for both of the two major foci that were 
unresolved in Chase et al. (2000a). The additional data pro
duce trees in which the liliid orders continue to be paraphy
letic. Petrosaviaceae are clearly sister (combined 100, 100 
BP for the two encompassing nodes, plastid 100, 85 BP) to 
all orders except for Acorales and Alismatales. Pandanales 
and Dioscoreales are a clade with moderate support (87, 84 
BP in the combined and plastid analyses). Likewise, Aspar
agales and the commelinids form a moderately supported 
clade (79, 82 BP). Adding additional genes appears to be 
required before a confident estimate of relationships for 
these clades is obtained, although with seven genes we ap
pear to be approaching this point. 

Graham et al. (2006) with ca. 14-15 kb of plastid DNA 
per taxon, found that the Asparagales/commelinid clade was 
strongly supported (96 BP). The relationships in Graham et 
al. (2006) are nearly identical to those found with four plas
tid genes here (Fig. 4, 5) and generally have similar levels 
of bootstrap support. Analyzing just plastid ndhF, Givnish et 
al. (2006) also found similar relationships, but of course with 
lower support than in Graham et al. (2006) and here. Support 
for Dioscoreales/Pandanales is lower (63 vs. 87 BP), as is 
that for the node of Liliales sister to Asparagales/commelin
ids (70 vs. 77 BP) and the positions of Arecales and Dasy
pogonaceae (both <50 BP). It should be noted that in Gra-

ham et al. (2006), the positions of Arecales and Dasypogon
aceae are different from those obtained in this study (i.e., 
Arecales are sister to Poales with 33 BP rather than sister to 
all other commelinids with <50 BP; Dasypogonaceae are 
sister to Commelinales/Zingiberales with 38 BP rather 
than-as here-sister to Poales with 58 BP). 

With respect to relationships of the orders within the com
melinids, we see a similar pattern in the two analyses pre
sented here (but note that Graham et al. [2006] did not get 
exactly these same relationships as noted above). Relation
ships here are resolved, but the two most crucial nodes, those 
placing Dasypogonaceae as sister to Poales and Arecales sis
ter to all other commelinids are weakly supported (<50, 58 
BP; Fig. 3, 5). Support for the Commelinales/Zingiberales 
clade is much higher than in Chase et al. (2000b; 100 vs. 71 
BP), as is support for all of the orders except for Arecales, 
which was already 100 BP. Support for the commelinid clade 
is also improved, 100 vs. 77. Thus we see some major im
provements in terms of increased support for the spine of 
the monocot tree, and there were substantial improvements 
in support for the positions of Petrosaviaceae, Dioscoreales/ 
Pandanales and monophyly of the commelinids. The single 
most crucial node to higher-level relationships is that linking 
Liliales to Asparagales/commelinids; in the combined anal
ysis of all genes, this node was only 77 BP vs. 80 BP in the 
plastid analysis (70 BP in Graham et al. 2006). More data 
and more extensive examination of the patterns present in 
the separate genomic compartments are now required to bet
ter assess confidence in this node. 

It now appears appropriate to adopt Petrosaviales because 
they are sister to a clade composed of many orders. This is 
a formally stated prerequisite described in APG II (2003). 
The name is already available in the literature. 

Alismatales.-The additional data have improved bootstrap 
support for the order, 100 here vs. 92 BP in Chase et al. 
(2000b). The position of Tofieldiaceae relative to Araceae 
and the aquatic families (Alismatanae sensu Dahlgren et al. 
1985) is here strongly supported as sister to them both (100 
BP), whereas there was less than 50 BP for the position 
previously. Two subclades within the aquatic families are 
moderately to strongly supported (100 and 87 BP), as in Les 
and Haynes (1995): (i) Alismataceae, Butomaceae, and Hy
drocharitaceae (and perhaps Najadaceae and Limnocharita
ceae, which were not included here) and (ii) Cymodocea
ceae, Juncaginaceae, Potamogetonaceae, and Zosteraceae 
(and Aponogetonaceae, Posidoniaceae, Ruppiaceae, and 
Scheuchzeriaceae, also not included here). 

Liliales.-In the shortest trees, Campynemataceae are sister 
to Melanthiaceae, in which they were previously included 
(Dahlgren et al. 1985). This pair of families is sister to all 
the remaining Liliales, but with less than 50 BP. The plastid
only trees (Fig. 4, 5) differ and resolve the positions of these 
taxa (Fig. 4), but this is <50 BP. Rhipogonaceae are strongly 
supported as sister to Philesiaceae, but the position of Smi
lacaceae is weakly supported relative to Liliaceae s.s. and 
Philesiaceae/Rhipogonaceae. One major difference between 
trees in this study and those of most previous analyses is the 
position of Petermanniaceae, which in Chase et al. (2000b) 
and Rudall et al. (2000) were embedded in Colchicaceae, 
rather than being sister to Colchicaceae and Alstr~emeri-
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aceae!Luzuriagaceae as here (Fig. 2, 4). The reason for this 
change is that we discovered that the material identified as 
Petermannia F. Muell. is in fact Tripladenia D. Don (both 
are vining taxa with broad, dicot-like leaves from south
eastern Australia). Therefore, we recognize Petermanniaceae 
as a distinct family and not a synonym of Colchicaceae as 
in APG II (2003). The other major change is the addition of 
Corsiaceae to this clade. Their exact position is not clear, 
and the evidence is at this point based solely on the rDNA 
data; Arachnitis is sister to Lilium L. (result not shown), but 
this is weakly supported. See Fay et al. (2006) for a better
sampled analysis of Liliales. 

Dioscoreales/Pandanales.-These two orders forming a 
moderately supported clade (87 BP) is a major shift from 
previous analyses. Nartheciaceae being sister to the rest of 
Dioscoreales is now strongly supported unlike their position 
in Chase et al. (2000b) and Caddick et al. (2002a), and there 
is morphological evidence to support this position (Caddick 
et al. 2002b). Thismia is missing 26S rDNA, matK and ndhF, 
and Burmannia is missing ndhF, and there is a tendency for 
all the achlorophyllous taxa to attract each other in the atpl 
tree (Petersen et al. 2006), which may lower bootstrap sup
port for the phylogenetic patterns in Dioscoreales. APG II 
(2003) recognized a broader concept of Dioscoreaceae (in
cluding Taccaceae and Trichopodaceae) based on the results 
in Caddick et al. (2002a, b). 

Relationships within Pandanales are little changed over 
previous studies, and the only major alteration is that Vel
loziaceae are now strongly supported as sister to the rest, 
although the position of Triuridaceae relative to Velloziaceae 
is not clear. We have only the rDNA and atpl data upon 
which to base the placement of Triuridaceae. 

Asparagales.-The relationship of Orchidaceae to the rest of 
Asparagales now seems clear; they are sister to the rest of 
the order both here (90, 86 BP) as well as in Graham et al. 
(2006; 76 BP) and Hilu et al. (2003; <50 BP). All analyses 
to date, except for that of Savolainen et al. (2000) in which 
they were unresolved, have positioned orchids in Aspara
gales. This result has much higher support than in Chase et 
al. (2000b; 56 BP). In Pires et al. (2006), support for Or
chidaceae in Asparagales is moderate (88 BP). 

The position of Boryaceae remains unclear relative to the 
rest of the order (except for the orchids) and the hypoxid 
clade (BP 85 in the combined analysis), which includes 
Blandfordiaceae, Lanariaceae, Asteliaceae, and Hypoxida
ceae and is moderately supported. The last three families 
share a number of characters (Rudall et al. 1998) and could 
be combined into one family on the basis of these results. 
Blandfordiaceae are morphologically highly divergent from 
the rest of these, although based on DNA data they appear 
to be related to them. In Graham et al. (2006), Boryaceae 
are weakly supported as sister to the hypoxid clade (78 BP). 
The next clade up from Boryaceae has Tecophilaeaceae as 
sister (54 BP) to the rest, followed by a weakly supported 
(<50 BP) clade with Doryanthaceae sister to Ixioliriaceae/ 
Iridaceae (99 BP). Although the relationship of Iridaceae to 
Ixioliriaceae here and in Hilu et al. (2003) is strongly sup
ported, other studies (Graham et al. 2006; Pires et al. 2006) 
place Ixioliriaceae with Tecophilaeaceae, and the positions 

of all of these families require additional sampling to estab
lish their interrelationships. 

Support for the next clade (Xeronemataceae upward in 
Fig. 3, 5) is strong (100 BP). Within the clade sister to Xe
ronemataceae, Xanthorrhoeaceae s.l. (including Asphodela
ceae and Hemerocallidaceae) are sister (100 BP) to that 
termed the "higher asparagoids" (Rudall et al. 1997), which 
APG II (2003) lumped into two families, Alliaceae s.l. (in
cluding Amaryllidaceae and Agapanthaceae, all with um
bellate inflorescences enclosed by two large bracts) and As
paragaceae s.l. (including Agavaceae s.l., Aphyllanthaceae, 
Hyacinthaceae, Laxmanniaceae, Ruscaceae, and Themida
ceae, which all have racemes except for the last that have 
umbellate inflorescences like Alliaceae but differ in lacking 
the two enclosing bracts). With the taxon sampling used 
here, Aphyllanthes L. causes problems, as documented pre
viously in Fay et al. (2000) and McPherson et al. (in press). 
In the combined analysis of all data, Aphyllanthes fell with 
Scilla L. (but with BP <50; Fig. 3), but in the plastid com
bined analysis Aphyllanthes was one of the taxa involved in 
creating islands of equally most-parsimonious trees, so that 
in the strict consensus tree this part of the tree was highly 
unresolved (Fig. 5). With a greater sampling of genera, Pires 
et al. (2006) placed Aphyllanthes with Lomandra Labill. and 
Sowerbaea Sm. (Laxmanniaceae). McPherson et al. (in 
press) examined the problems associated with the placement 
of Aphyllanthes. To illustrate this effect, we removed Aphyl
lanthes here as well and did a bootstrap analysis of the com
bined data (results not shown), and the bootstrap percentages 
went up dramatically; for example, Alliaceae s.l. received 91 
BP (it was less than 85 BP in the combined analysis here; 
Fig. 3), and Asparagaceae s.l. was 62 BP (vs. 53 BP in Fig. 
3). A similar experiment was reported in Pires et al. (2006), 
in which Alliaceae s.l. received 100 BP and Asparagaceae 
s.l. 96 BP. Graham et al. (2006) omitted Aphyllanthes and 
obtained 100 and 97 BP for Alliaceae s.l. and Asparagaceae 
s.l., respectively. We will not discuss relationships within 
Alliaceae s.l. and Asparagaceae s.l. and refer readers to the 
better-sampled analyses of Pires et al. (2006). 

Commelinids.-The commelinid clade has a long history of 
recognition (Dahlgren et al. 1985) and was present in the 
first large analyses of rbcL in the monocots (Chase et al. 
1993, 1995a; Duvall et al. 1993), although it was poorly 
supported. In all analyses here they received 100 BP (Fig. 
3, 5), as they also did in Graham et al. (2006). Within com
melinids, inter-ordinal relationships are consistently re
solved, but the positions of Dasypogonaceae and Arecales 
are not well supported. Our analyses and those of Graham 
et al. (2006) do not agree on the position of these two taxa; 
because of this inconsistency and poor support the former 
could yet end up being placed in either Poales or Arecales, 
so acceptance of Dasypogonales would be premature (the 
ordinal name already exists). 

Within Poales, relationships are much clearer than in 
Chase et al. (2000b ), perhaps partly due to the better sam
pling of this study. The relative positions of Bromeliaceae 
and Typhaceae remain weakly supported (Sparganium L. 
and Typha L. are sisters, 100 BP; recognition of Spargani
aceae in APG II 2003 was an accident and not intended). 
Graham et al. (2006) reverses their positions relative to our 
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results, but again without bootstrap support >50. Our anal
ysis of plastid DNA and that of Givnish et al. (2006) Gust 
plastid ndhF) make Bromeliaceae and Typhaceae sister taxa, 
but with weak support. Rapateaceae are then sister to the 
remainder of the order with moderate to strong support (97, 
82 BP in the combined analysis; 96, 72 BP in the plastid 
analysis). 

The remaining families are split into two large subclades: 
(i) the graminid clade with the restionid families (Anarthri
aceae, Centrolepidaceae, and Restionaceae) sister to Poaceae 
plus Ecdeiocoleaceae, Flagellariaceae, and Joinvilleaceae, 
and (ii) the cyperid clade, which has Xyridaceae/Mayaca
ceae sister to Cyperaceae plus Eriocaulaceae, Juncaceae, and 
Thumiaceae. Hydatellaceae (results not shown) appear to be 
related to the Xyridaceae/Eriocaulaceae clade, although the 
large amount of missing data for Trithuria and spurious at
traction with Burmanniaceae makes this assessment tenta
tive. All these relationships are similar to those of other stud
ies focusing just on the commelinid clade (Givnish et al. 
1999; Bremer 2002). The position of Mayacaceae as sister 
to the cyperid clade is variably supported here (60, 100 BP), 
but in Graham et al. (2006) it is strongly supported (100, 
100 BP). 

Prospects for improvement.-The accumulating monocot 
data matrix will require the addition of yet more genes be
fore relationships of Asparagales, commelinids, and Liliales 
to the other clades are all strongly supported. Noncoding 
plastid regions, such as the trnL intron and trnL-F intergenic 
spacer, which have worked well for estimating relationships 
at the basal nodes in the angiosperms (Borsch et al. 2003) 
will not work in the monocots as a whole because alignment 
is problematic (Fay et al. 2000), and many groups have large 
numbers of plastid microsatellite motifs that make sequenc
ing these regions technically extremely difficult (Devey et 
al. 2006). Other plastid regions can be added to the matrix 
to help address the remaining issues (Graham et al. 2006), 
but it would be desirable to include nuclear protein-coding 
genes and additional mitochondrial genes in future work. 

Plastid genes are either absent or highly divergent in 
achlorophyllous taxa such as some Burmanniaceae, Corsi
aceae, and Triuridaceae, which presents problems for obtain
ing clear placements of such taxa in the monocot tree. We 
had hoped that mitochondrial genes would permit us to bet
ter assess relationships of these taxa, but highly heteroge
neous rates among different lineages of monocots, including 
achlorophyllous species, makes this more difficult and less 
satisfactory than anticipated (Petersen et al. 2006). 

Nuclear, low-copy protein-coding genes would be poten
tially valuable additions to the combined data matrices (such 
as PHYC; Mathews and Donoghue 1999; Duvall et al. 2006), 
but thus far most of these that have been tried appear to be 
routinely and reliably amplified from monocots. However, 
investigations with prospective loci are ongoing. With 
emerging EST collections from across the monocots and the 
complete genomic sequence of Oryza L., we may be able to 
identify some good candidates soon, as Fulton et al. (2002) 
have done in eudicots. Although we are reasonably confident 
that patterns obtained thus far with plastid genes, which have 
the greatest impact on topology, appear to be made clearer 
(i.e., have higher bootstrap percentages) by addition of genes 

from the other two genomes, there is at least an interest in 
having good representation from all three genomes so that 
we can use the phylogenetic framework of the combined 
analyses to make evaluations of molecular evolution for 
these loci more robust. Hybridization and horizontal transfer 
are not likely to greatly affect either monocot tree topologies 
or optimization of other data on trees. In the first case, this 
is because hybrids are formed by such closely related species 
(which are only little diverged in their DNA sequences) that 
the effect would be exceedingly small. In the second, this is 
because we already have evidence that the existing trees are 
predictive of other attributes for these taxa (e.g., Adams et 
al. 2001), which would not be the case if horizontal transfers 
of only one or a few genes had occurred. Use of plastid 
genes in monocot phylogenetics has been a great success 
and parallels that obtained for angiosperms as a whole, but 
we nonetheless look forward to seeing how additional mi
tochondrial and nuclear genes contribute to our knowledge 
of monocot phylogenetics. 
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