34 research outputs found

    Poly-phased fluid flow in the giant fossil pockmark of Beauvoisin, SE basin of France

    Get PDF
    The giant Jurassic-aged pockmark field of Beauvoisin developed in a 800 m wide depression for over 3.4 Ma during the Oxfordian; it formed below about 600 m water depth. It is composed of sub-sites organized in clusters and forming vertically stacked carbonate lenses encased in marls . This fine-scale study is focused on a detailed analysis of petrographical organization and geochemical signatures of crystals that grew up in early to late fractures of carbonate lenses, surrounding nodules, and tubes that fed them. The isotopic signature (C, O and Sr) shows that at least three different episodes of fluid migration participated to the mineralization processes. Most of the carbonates precipitated when biogenic seepage was active in the shallow subsurface during the Oxfordian. The second phase occurred relatively soon after burial during early Cretaceous and thermogenic fluids came probably from underlying Pliensbachian, Late Toarcian or Bajocian levels. The third phase is a bitumen-rich fluid probably related to these levels reaching the oil window during Mio-Pliocene. The fluids migrated through faults induced by the emplacement of Triassic-salt diapir of Propiac during the Late Jurassic and that remained polyphased drain structures over time

    Variability of CD3 membrane expression and T cell activation capacity

    Get PDF
    αβT cells have a wide distribution of their CD3 membrane density. The aim of this paper was to evaluate the significance of the CD3 differential expression on T cell subsets. Analysis was performed on healthy donors and renal transplant patients by flowcytometry The results obtained are : 1-CD3 expression was widely distributed (CV =38.3±3.1 to (43±2.3%). 2-The CD4, CD8,CD45 and forward scatter were similarly distributed. 3-The diversity of CD3 expression was direcly related to the clonotypes: γ9, non γ9 from γδT cells and Vβ clonotype from αβT cells (e.g.: Vβ3FITC 7980±1628 Vβ8PE: Vβ20-FITC 11768±1510). 4-Using a computer simulation, we could confirm differential kinetics of T cell activation according to the initial parameters. Finally, in vitro activation was significantly higher on Vβ8 and Vβ9 (high CD3) compared to Vβ2 and Vβ3 (low CD3, P=0.040 to 0.0003). In conclusion: T cells have highly heterogeneous CD3 expression, possibly predetermined and with clear functional significance

    Impact of early enteral versus parenteral nutrition on mortality in patients requiring mechanical ventilation and catecholamines: study protocol for a randomized controlled trial (NUTRIREA-2)

    Get PDF
    BACKGROUND: Nutritional support is crucial to the management of patients receiving invasive mechanical ventilation (IMV) and the most commonly prescribed treatment in intensive care units (ICUs). International guidelines consistently indicate that enteral nutrition (EN) should be preferred over parenteral nutrition (PN) whenever possible and started as early as possible. However, no adequately designed study has evaluated whether a specific nutritional modality is associated with decreased mortality. The primary goal of this trial is to assess the hypothesis that early first-line EN, as compared to early first-line PN, decreases day 28 all-cause mortality in patients receiving IMV and vasoactive drugs for shock. METHODS/DESIGN: The NUTRIREA-2 study is a multicenter, open-label, parallel-group, randomized controlled trial comparing early PN versus early EN in critically ill patients requiring IMV for an expected duration of at least 48 hours, combined with vasoactive drugs, for shock. Patients will be allocated at random to first-line PN for at least 72 hours or to first-line EN. In both groups, nutritional support will be started within 24 hours after IMV initiation. Calorie targets will be 20 to 25 kcal/kg/day during the first week, then 25 to 30 kcal/kg/day thereafter. Patients receiving PN may be switched to EN after at least 72 hours in the event of shock resolution (no vasoactive drugs for 24 consecutive hours and arterial lactic acid level below 2 mmol/L). On day 7, all patients receiving PN and having no contraindications to EN will be switched to EN. In both groups, supplemental PN may be added to EN after day 7 in patients with persistent intolerance to EN and inadequate calorie intake. We plan to recruit 2,854 patients at 44 participating ICUs. DISCUSSION: The NUTRIREA-2 study is the first large randomized controlled trial designed to assess the hypothesis that early EN improves survival compared to early PN in ICU patients. Enrollment started on 22 March 2013 and is expected to end in November 2015. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT01802099 (registered 27 February 2013)

    Urban wastewater reuse using a coupling between nanofiltration and ozonation: Techno-economic assessment

    No full text
    International audienceCombination of nanofiltration and ozonation was investigated for the treatment of urban wastewater. First objective was to demonstrate that nanofiltration can be used instead of reverse osmosis as it enables good rejection rates with reduced cost because of lower operating and maintenance costs. In this way, this paper presents an economic and technical evaluation of the proposed coupling where ozonation is used to treat retentates from nanofiltration. Reverse Osmosis System Analysis (ROSA) software was applied to simulate the filtration design. The effect of membrane choice on specific energy consumption, capital, operation and maintenance costs and scaling potential was investigated. It was demonstrated that using nanofiltration instead of reverse osmosis enable cost saving of 35 k/yearfor125m(3)/h.Secondobjectivewastoevaluatetheimpactofthetreatmentofretentatesbyozonationontheglobalcost.Itwashighlightedthatthecouplingwouldbeanacceptablesolutionfromaneconomicpointofviewforwastewaterreuse.Thepossiblereuseofbothpermeateandconcentrateenableanoperatingcostsavingof15.4k/year for 125 m(3)/h. Second objective was to evaluate the impact of the treatment of retentates by ozonation on the global cost. It was highlighted that the coupling would be an acceptable solution from an economic point of view for wastewater reuse. The possible reuse of both permeate and concentrate enable an operating cost saving of 15.4 k/year for 125 m(3)/h. An optimum recovery rate of 80% was found for which cost of membrane process is balanced by a decrease in the cost of ozonation. (C) 2019 Institution of Chemical Engineer

    Chimiothérapies dans le cancer colorectal : étude pragmatique des modifications de prescription et de dose intensité

    No full text
    International audienceINTRODUCTION:Chemotherapy induced toxicities can generate changes in prescribing and relative dose intensity which have an impact on therapeutic efficacy.METHOD:This is a prospective observational study performed in hepato-gastroenterology department for 6 months. All patients treated for colorectal cancer and beginning a protocol with at least one parenteral drug have been included.RESULTS:Among the 48 patients enrolled, 85.4% of them had at least one prescription change, which concerned 30.3% of 238 cycles. Of the 766 analyzed prescription lines, 16.6% of them were postponed and/or 6.7% had modified dosage and/or 5.6% were stopped prematurely. Grades 2 to 4 adverse reactions were responsible for at least one change prescribing to 64.6% of patients and 17.6% of cycles. Toxicity induced prescription changes were mainly due to clinical toxicities (79.3%). The rate of patients with a relative dose intensity greater than 70% was 92.9% in adjuvant state, 66.7% and 62.5% in metastatic state first line and second and subsequent line.CONCLUSION:High-grade clinical toxicities are the main chemotherapy prescription change pattern in colorectal cancer. Knowledge of toxicities before the patient's arrival is expected to target patients for which the drug preparation can be anticipated and for which a cycle postponement, dose adjustment or discontinuation is necessary

    EPA is Cardioprotective in Male Rats Subjected to Sepsis, but ALA is Not Beneficial

    No full text
    International audienceIt has been proven that dietary eicosapentaenoic acid (C20:5 n-3 or EPA) protects the heart against the deleterious effects of sepsis in female rats. We do not know if this is the case for male rodents. In this case, the efficiency of other n-3 polyunsaturated fatty acids (PUFAs) remains to be determined in both female and male rats. This study aimed at (i) determining whether dietary EPA is cardioprotective in septic male rats; (ii) evaluating the influence of dietary α-linolenic (C18:3 n-3 or ALA) on cardiac function during this pathology; and (iii) finding out the physiological and molecular mechanisms responsible for the observed effects. Sixty male rats were divided into three dietary groups. The animals were fed a diet deficient in n-3 PUFAs (DEF group), a diet enriched with ALA (ALA group) or a diet fortified with EPA (EPA group) for 6 weeks. Thereafter, each group was subdivided into 2 subgroups, one being subjected to cecal ligation and puncture (CLP) and the other undergoing a fictive surgery. Cardiac function was determined in vivo and ex vivo. Several parameters related to the inflammation process and oxidative stress were determined. Finally, the fatty acid compositions of circulating lipids and cardiac phospholipids were evaluated. The results of the ex vivo situation indicated that sepsis triggered cardiac damage in the DEF group. Conversely, the ex vivo data indicated that dietary ALA and EPA were cardioprotective by resolving the inflammation process and decreasing the oxidative stress. However, the measurements of the cardiac function in the in vivo situation modulated these conclusions. Indeed, in the in vivo situation, sepsis deteriorated cardiac mechanical activity in the ALA group. This was suspected to be due to a restricted coronary flow which was related to a lack of cyclooxygenase substrates in membrane phospholipids. Finally, only EPA proved to be beneficial in sepsis. Its action necessitates both resolution of inflammation and increased coronary perfusion. In that sense, dietary ALA, which does not allow the accumulation of vasodilator precursors in membrane lipids, cannot be protective during the pathology

    EPA is Cardioprotective in Male Rats Subjected to Sepsis, but ALA is Not Beneficial

    No full text
    International audienceIt has been proven that dietary eicosapentaenoic acid (C20:5 n-3 or EPA) protects the heart against the deleterious effects of sepsis in female rats. We do not know if this is the case for male rodents. In this case, the efficiency of other n-3 polyunsaturated fatty acids (PUFAs) remains to be determined in both female and male rats. This study aimed at (i) determining whether dietary EPA is cardioprotective in septic male rats; (ii) evaluating the influence of dietary α-linolenic (C18:3 n-3 or ALA) on cardiac function during this pathology; and (iii) finding out the physiological and molecular mechanisms responsible for the observed effects. Sixty male rats were divided into three dietary groups. The animals were fed a diet deficient in n-3 PUFAs (DEF group), a diet enriched with ALA (ALA group) or a diet fortified with EPA (EPA group) for 6 weeks. Thereafter, each group was subdivided into 2 subgroups, one being subjected to cecal ligation and puncture (CLP) and the other undergoing a fictive surgery. Cardiac function was determined in vivo and ex vivo. Several parameters related to the inflammation process and oxidative stress were determined. Finally, the fatty acid compositions of circulating lipids and cardiac phospholipids were evaluated. The results of the ex vivo situation indicated that sepsis triggered cardiac damage in the DEF group. Conversely, the ex vivo data indicated that dietary ALA and EPA were cardioprotective by resolving the inflammation process and decreasing the oxidative stress. However, the measurements of the cardiac function in the in vivo situation modulated these conclusions. Indeed, in the in vivo situation, sepsis deteriorated cardiac mechanical activity in the ALA group. This was suspected to be due to a restricted coronary flow which was related to a lack of cyclooxygenase substrates in membrane phospholipids. Finally, only EPA proved to be beneficial in sepsis. Its action necessitates both resolution of inflammation and increased coronary perfusion. In that sense, dietary ALA, which does not allow the accumulation of vasodilator precursors in membrane lipids, cannot be protective during the pathology

    EPA is Cardioprotective in Male Rats Subjected to Sepsis, but ALA is Not Beneficial

    No full text
    International audienceIt has been proven that dietary eicosapentaenoic acid (C20:5 n-3 or EPA) protects the heart against the deleterious effects of sepsis in female rats. We do not know if this is the case for male rodents. In this case, the efficiency of other n-3 polyunsaturated fatty acids (PUFAs) remains to be determined in both female and male rats. This study aimed at (i) determining whether dietary EPA is cardioprotective in septic male rats; (ii) evaluating the influence of dietary α-linolenic (C18:3 n-3 or ALA) on cardiac function during this pathology; and (iii) finding out the physiological and molecular mechanisms responsible for the observed effects. Sixty male rats were divided into three dietary groups. The animals were fed a diet deficient in n-3 PUFAs (DEF group), a diet enriched with ALA (ALA group) or a diet fortified with EPA (EPA group) for 6 weeks. Thereafter, each group was subdivided into 2 subgroups, one being subjected to cecal ligation and puncture (CLP) and the other undergoing a fictive surgery. Cardiac function was determined in vivo and ex vivo. Several parameters related to the inflammation process and oxidative stress were determined. Finally, the fatty acid compositions of circulating lipids and cardiac phospholipids were evaluated. The results of the ex vivo situation indicated that sepsis triggered cardiac damage in the DEF group. Conversely, the ex vivo data indicated that dietary ALA and EPA were cardioprotective by resolving the inflammation process and decreasing the oxidative stress. However, the measurements of the cardiac function in the in vivo situation modulated these conclusions. Indeed, in the in vivo situation, sepsis deteriorated cardiac mechanical activity in the ALA group. This was suspected to be due to a restricted coronary flow which was related to a lack of cyclooxygenase substrates in membrane phospholipids. Finally, only EPA proved to be beneficial in sepsis. Its action necessitates both resolution of inflammation and increased coronary perfusion. In that sense, dietary ALA, which does not allow the accumulation of vasodilator precursors in membrane lipids, cannot be protective during the pathology

    EPA is cardioprotective in male rats subjected to sepsis, but ALA is not beneficial

    No full text
    International audienceIt has been proven that dietary eicosapentaenoic acid (C20:5 n-3 or EPA) protects the heart against the deleterious effects of sepsis in female rats. We do not know if this is the case for male rodents. In this case, the efficiency of other n-3 polyunsaturated fatty acids (PUFAs) remains to be determined in both female and male rats. This study aimed at (i) determining whether dietary EPA is cardioprotective in septic male rats; (ii) evaluating the influence of dietary α-linolenic (C18:3 n-3 or ALA) on cardiac function during this pathology; and (iii) finding out the physiological and molecular mechanisms responsible for the observed effects. Sixty male rats were divided into three dietary groups. The animals were fed a diet deficient in n-3 PUFAs (DEF group), a diet enriched with ALA (ALA group) or a diet fortified with EPA (EPA group) for 6 weeks. Thereafter, each group was subdivided into 2 subgroups, one being subjected to cecal ligation and puncture (CLP) and the other undergoing a fictive surgery. Cardiac function was determined in vivo and ex vivo. Several parameters related to the inflammation process and oxidative stress were determined. Finally, the fatty acid compositions of circulating lipids and cardiac phospholipids were evaluated. The results of the ex vivo situation indicated that sepsis triggered cardiac damage in the DEF group. Conversely, the ex vivo data indicated that dietary ALA and EPA were cardioprotective by resolving the inflammation process and decreasing the oxidative stress. However, the measurements of the cardiac function in the in vivo situation modulated these conclusions. Indeed, in the in vivo situation, sepsis deteriorated cardiac mechanical activity in the ALA group. This was suspected to be due to a restricted coronary flow which was related to a lack of cyclooxygenase substrates in membrane phospholipids. Finally, only EPA proved to be beneficial in sepsis. Its action necessitates both resolution of inflammation and increased coronary perfusion. In that sense, dietary ALA, which does not allow the accumulation of vasodilator precursors in membrane lipids, cannot be protective during the pathology
    corecore