155 research outputs found
Specific lipid recruitment by the retroviral gag protein upon HIV-1 assembly : from model membranes to infected cells
The retroviral Gag protein targets the plasma membrane of infected cells for viral particle formation and release. The matrix domain (MA) of Gag is myristoylated for membrane anchoring but also contains a highly basic region that recognizes acidic phospholipids. Gag targets lipid molecules at the inner leaflet of the plasma membrane including phosphatidylinositol (4,5) bisphosphate (PI(4,5)P2) and cholesterol. Here, we addressed the question whether HIV-1 Gag was able to trap PI(4,5)P2 and/or other lipids during HIV-1 assembly in silico, in vitro on reconstituted membranes and in cellulo at the plasma membrane of the host CD4+ T cells. In silico, we could observe the first PI(4,5)P2 preferential recruitment by HIV-1 MA or Gag while protein docked on artificial membranes. In vitro, using biophysical techniques, we observed the specific trapping of PI(4,5)P2, and, to a lesser extent, cholesterol and the exclusion of sphingomyelin, during HIV-1 myr(-)Gag self-assembly on LUVs and SLBs. Finally, in infected living CD4+ T cells, we measured lipid dynamics within and away from HIV-1 assembly sites using super-resolution stimulated emission depletion (STED) microscopy coupled with scanning Fluorescence Correlation Spectroscopy (sSTED-FCS). The analysis of HIV-1 infected CD4+ T lymphocytes revealed that, upon virus assembly, HIV-1 is able to specifically trap PI(4,5)P2, and cholesterol but not phosphatidylethanolamine (PE) or sphingomyelin (SM) at the cellular membrane. Furthermore, analyzing CD4+ T cells expressing only HIV-1 Gag protein showed that Gag is the main driving force restricting the mobility of PI(4,5)P2 and cholesterol at the cell plasma membrane. Our data provide the first direct evidence showing that HIV-1 Gag creates its own specific lipid environment for virus assembly by selectively recruiting lipids to generate PI(4,5)P2/cholesterol-enriched nanodomains favoring virus assembly, and that HIV-1 does not assemble on pre-existing lipid domains
Recommended from our members
HIV-1 Gag specifically restricts PI(4,5)P2 and cholesterol mobility in living cells creating a nanodomain platform for virus assembly
HIV-1 Gag protein assembles at the plasma membrane of infected cells for viral particle formation. Gag targets lipids, mainly PI(4,5)P2, at the inner leaflet of this membrane. Here, we address the question whether Gag is able to trap specifically PI(4,5)P2 or other lipids during HIV-1 assembly in the host CD4+ T lymphocytes. Lipid dynamics within and away from HIV-1 assembly sites were determined using super-resolution microscopy coupled with scanning fluorescence correlation spectroscopy in living cells. Analysis of HIV-1âinfected cells revealed that, upon assembly, HIV-1 is able to specifically trap PI(4,5)P2 and cholesterol, but not phosphatidylethanolamine or sphingomyelin. Furthermore, our data showed that Gag is the main driving force to restrict the mobility of PI(4,5)P2 and cholesterol at the cell plasma membrane. This is the first direct evidence highlighting that HIV-1 creates its own specific lipid environment by selectively recruiting PI(4,5)P2 and cholesterol as a membrane nanoplatform for virus assembly
Bortezomib-Induced Bronchiolitis Obliterans Organizing Pneumonia
Introduction. Bortezomib is a proteasome inhibitor indicated for the treatment of multiple myeloma patients. The most frequent side effects are gastrointestinal and neurological. Serious pulmonary complications have been described rarely. Observation. This case involves a 74-year-old man suffering from IgG Kappa myeloma treated with bortezomib, melphalan, and dexamethasone. After administering chemotherapy, the patient developed an acute respiratory distress syndrome (ARDS). A surgical pulmonary biopsy proved the existence of bronchiolitis obliterans organizing pneumonia (BOOP) lesions. Systemic corticotherapy led to a rapid improvement in the patient's condition. Conclusion. This is the first reported histologically confirmed case of bortezomid-induced BOOP. Faced with severe respiratory symptoms in the absence of other etiologies, complications due to bortezomid treatment should be evoked and corticotherapy considered
The ANTARES Optical Beacon System
ANTARES is a neutrino telescope being deployed in the Mediterranean Sea. It
consists of a three dimensional array of photomultiplier tubes that can detect
the Cherenkov light induced by charged particles produced in the interactions
of neutrinos with the surrounding medium. High angular resolution can be
achieved, in particular when a muon is produced, provided that the Cherenkov
photons are detected with sufficient timing precision. Considerations of the
intrinsic time uncertainties stemming from the transit time spread in the
photomultiplier tubes and the mechanism of transmission of light in sea water
lead to the conclusion that a relative time accuracy of the order of 0.5 ns is
desirable. Accordingly, different time calibration systems have been developed
for the ANTARES telescope. In this article, a system based on Optical Beacons,
a set of external and well-controlled pulsed light sources located throughout
the detector, is described. This calibration system takes into account the
optical properties of sea water, which is used as the detection volume of the
ANTARES telescope. The design, tests, construction and first results of the two
types of beacons, LED and laser-based, are presented.Comment: 21 pages, 18 figures, submitted to Nucl. Instr. and Meth. Phys. Res.
Theories of schizophrenia: a genetic-inflammatory-vascular synthesis
BACKGROUND: Schizophrenia, a relatively common psychiatric syndrome, affects virtually all brain functions yet has eluded explanation for more than 100 years. Whether by developmental and/or degenerative processes, abnormalities of neurons and their synaptic connections have been the recent focus of attention. However, our inability to fathom the pathophysiology of schizophrenia forces us to challenge our theoretical models and beliefs. A search for a more satisfying model to explain aspects of schizophrenia uncovers clues pointing to genetically mediated CNS microvascular inflammatory disease. DISCUSSION: A vascular component to a theory of schizophrenia posits that the physiologic abnormalities leading to illness involve disruption of the exquisitely precise regulation of the delivery of energy and oxygen required for normal brain function. The theory further proposes that abnormalities of CNS metabolism arise because genetically modulated inflammatory reactions damage the microvascular system of the brain in reaction to environmental agents, including infections, hypoxia, and physical trauma. Damage may accumulate with repeated exposure to triggering agents resulting in exacerbation and deterioration, or healing with their removal. There are clear examples of genetic polymorphisms in inflammatory regulators leading to exaggerated inflammatory responses. There is also ample evidence that inflammatory vascular disease of the brain can lead to psychosis, often waxing and waning, and exhibiting a fluctuating course, as seen in schizophrenia. Disturbances of CNS blood flow have repeatedly been observed in people with schizophrenia using old and new technologies. To account for the myriad of behavioral and other curious findings in schizophrenia such as minor physical anomalies, or reported decreased rates of rheumatoid arthritis and highly visible nail fold capillaries, we would have to evoke a process that is systemic such as the vascular and immune/inflammatory systems. SUMMARY: A vascular-inflammatory theory of schizophrenia brings together environmental and genetic factors in a way that can explain the diversity of symptoms and outcomes observed. If these ideas are confirmed, they would lead in new directions for treatments or preventions by avoiding inducers of inflammation or by way of inflammatory modulating agents, thus preventing exaggerated inflammation and consequent triggering of a psychotic episode in genetically predisposed persons
First results of the Instrumentation Line for the deep-sea ANTARES neutrino telescope
In 2005, the ANTARES Collaboration deployed and operated at a depth of 2500 m a so-called Mini Instrumentation Line equipped with Optical Modules (MILOM) at the ANTARES site. The various data acquired during the continuous operation from April to December 2005 of the MILOM confirm the satisfactory performance of the Optical Modules, their front-end electronics and readout system. as well as the calibration devices of the detector. The in situ measurement of the Optical Module time response yields a resolution better than 0.5 ns. The performance of the acoustic positioning system, which enables the spatial reconstruction of the ANTARES detector with a precision of about 10 cm, is verified. These results demonstrate that with the full ANTARES neutrino telescope the design angular resolution of better than 0.3 degrees can be realistically achieved
The data acquisition system for the ANTARES neutrino telescope
The ANTARES neutrino telescope is being constructed in the Mediterranean Sea.
It consists of a large three-dimensional array of photo-multiplier tubes. The
data acquisition system of the detector takes care of the digitisation of the
photo-multiplier tube signals, data transport, data filtering, and data
storage. The detector is operated using a control program interfaced with all
elements. The design and the implementation of the data acquisition system are
described.Comment: 20 pages, 6 figures, accepted for publication in Nucl. Instrum. Meth.
Study of large hemispherical photomultiplier tubes for the ANTARES neutrino telescope
The ANTARES neutrino telescope, to be immersed depth in the Mediterranean Sea, will consist of a 3 dimensional matrix of 900 large area photomultiplier tubes housed in pressure resistant glass spheres. The selection of the optimal photomultiplier was a critical step for the project and required an intensive phase of tests and developments carried out in close collaboration with the main manufacturers worldwide. This paper provides an overview of the tests performed by the collaboration and describes in detail the features of the PMT chosen for ANTARES
ANTARES: the first undersea neutrino telescope
The ANTARES Neutrino Telescope was completed in May 2008 and is the first
operational Neutrino Telescope in the Mediterranean Sea. The main purpose of
the detector is to perform neutrino astronomy and the apparatus also offers
facilities for marine and Earth sciences. This paper describes the design, the
construction and the installation of the telescope in the deep sea, offshore
from Toulon in France. An illustration of the detector performance is given
- âŠ