53 research outputs found
Seasonal asymmetry in the evolution of surface ocean pCO2 and pH thermodynamic drivers and the influence on sea‐air CO2 flux
© The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Global Biogeochemical Cycles 32 (2018): 1476-1497, doi:10.1029/2017GB005855.It has become clear that anthropogenic carbon invasion into the surface ocean drives changes in the seasonal cycles of carbon dioxide partial pressure (pCO2) and pH. However, it is not yet known whether the resulting sea‐air CO2 fluxes are symmetric in their seasonal expression. Here we consider a novel application of observational constraints and modeling inferences to test the hypothesis that changes in the ocean's Revelle factor facilitate a seasonally asymmetric response in pCO2 and the sea‐air CO2 flux. We use an analytical framework that builds on observed sea surface pCO2 variability for the modern era and incorporates transient dissolved inorganic carbon concentrations from an Earth system model. Our findings reveal asymmetric amplification of pCO2 and pH seasonal cycles by a factor of two (or more) above preindustrial levels under Representative Concentration Pathway 8.5. These changes are significantly larger than observed modes of interannual variability and are relevant to climate feedbacks associated with Revelle factor perturbations. Notably, this response occurs in the absence of changes to the seasonal cycle amplitudes of dissolved inorganic carbon, total alkalinity, salinity, and temperature, indicating that significant alteration of surface pCO2 can occur without modifying the physical or biological ocean state. This result challenges the historical paradigm that if the same amount of carbon and nutrients is entrained and subsequently exported, there is no impact on anthropogenic carbon uptake. Anticipation of seasonal asymmetries in the sea surface pCO2 and CO2 flux response to ocean carbon uptake over the 21st century may have important implications for carbon cycle feedbacks.Cooperative Institute for Climate Science Grant Number: NA17RJ2612;
David and Lucile Packard Foundation/MBARI Grant Number: 4696;
NOAA Office of Climate Observations Grant Number: NA11OAR4310066;
NOAA. Grant Number NA11OAR4310066;
KBR Grant Numbers: A08OAR4320752, NA17RJ261
Разработка информационной системы контроля и учета посещаемости спортивного учреждения
Работа направлена на разработку информационной системы для контроля и учета посещаемости клиентов спортивного учреждения на основе NFC / RFID датчиков. Приведен анализ существующих решений и обоснование выбора используемых технологий.The work is aimed at developing an information system for monitoring and recording attendance of clients of a sports establishment based on NFC / RFID sensors. The analysis of existing solutions and justification of the choice of the technologies used are given
Pattern recognition with a magnon-scattering reservoir
Magnons are elementary excitations in magnetic materials and undergo
nonlinear multimode scattering processes at large input powers. In experiments
and simulations, we show that the interaction between magnon modes of a
confined magnetic vortex can be harnessed for pattern recognition. We study the
magnetic response to signals comprising sine wave pulses with frequencies
corresponding to radial mode excitations. Three-magnon scattering results in
the excitation of different azimuthal modes, whose amplitudes depend strongly
on the input sequences. We show that recognition rates above 95\% can be
attained for four-symbol sequences using the scattered modes, with strong
performance maintained with the presence of amplitude noise in the inputs
Perspectives on Chemical Oceanography in the 21st century: Participants of the COME ABOARD Meeting examine aspects of the field in the context of 40 years of DISCO
The questions that chemical oceanographers prioritize over the coming decades, and the methods we use to address these questions, will define our field's contribution to 21st century science. In recognition of this, the U.S. National Science Foundation and National Oceanic and Atmospheric Administration galvanized a community effort (the Chemical Oceanography MEeting: A BOttom-up Approach to Research Directions, or COME ABOARD) to synthesize bottom-up perspectives on selected areas of research in Chemical Oceanography. Representing only a small subset of the community, COME ABOARD participants did not attempt to identify targeted research directions for the field. Instead, we focused on how best to foster diverse research in Chemical Oceanography, placing emphasis on the following themes: strengthening our core chemical skillset; expanding our tools through collaboration with chemists, engineers, and computer scientists; considering new roles for large programs; enhancing interface research through interdisciplinary collaboration; and expanding ocean literacy by engaging with the public. For each theme, COME ABOARD participants reflected on the present state of Chemical Oceanography, where the community hopes to go and why, and actionable pathways to get there. A unifying concept among the discussions was that dissimilar funding structures and metrics of success may be required to accommodate the various levels of readiness and stages of knowledge development found throughout our community. In addition to the science, participants of the concurrent Dissertations Symposium in Chemical Oceanography (DISCO) XXV, a meeting of recent and forthcoming Ph.D. graduates in Chemical Oceanography, provided perspectives on how our field could show leadership in addressing long-standing diversity and early-career challenges that are pervasive throughout science. Here we summarize the COME ABOARD Meeting discussions, providing a synthesis of reflections and perspectives on the field
Nonuniform ocean acidification and attenuation of the ocean carbon sink
Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 44 (2017): 8404–8413, doi:10.1002/2017GL074389.Surface ocean carbon chemistry is changing rapidly. Partial pressures of carbon dioxide gas (pCO2) are rising, pH levels are declining, and the ocean's buffer capacity is eroding. Regional differences in short-term pH trends primarily have been attributed to physical and biological processes; however, heterogeneous seawater carbonate chemistry may also be playing an important role. Here we use Surface Ocean CO2 Atlas Version 4 data to develop 12 month gridded climatologies of carbonate system variables and explore the coherent spatial patterns of ocean acidification and attenuation in the ocean carbon sink caused by rising atmospheric pCO2. High-latitude regions exhibit the highest pH and buffer capacity sensitivities to pCO2 increases, while the equatorial Pacific is uniquely insensitive due to a newly defined aqueous CO2 concentration effect. Importantly, dissimilar regional pH trends do not necessarily equate to dissimilar acidity ([H+]) trends, indicating that [H+] is a more useful metric of acidification.2018-02-1
Recommended from our members
Magnetization Dynamics of an Individual Single-Crystalline Fe-Filled Carbon Nanotube
The magnetization dynamics of individual Fe-filled multiwall carbon-nanotubes (FeCNT), grown by chemical vapor deposition, are investigated by microresonator ferromagnetic resonance (FMR) and Brillouin light scattering (BLS) microscopy and corroborated by micromagnetic simulations. Currently, only static magnetometry measurements are available. They suggest that the FeCNTs consist of a single-crystalline Fe nanowire throughout the length. The number and structure of the FMR lines and the abrupt decay of the spin-wave transport seen in BLS indicate, however, that the Fe filling is not a single straight piece along the length. Therefore, a stepwise cutting procedure is applied in order to investigate the evolution of the ferromagnetic resonance lines as a function of the nanowire length. The results show that the FeCNT is indeed not homogeneous along the full length but is built from 300 to 400 nm long single-crystalline segments. These segments consist of magnetically high quality Fe nanowires with almost the bulk values of Fe and with a similar small damping in relation to thin films, promoting FeCNTs as appealing candidates for spin-wave transport in magnonic applications. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinhei
The XMM Cluster Survey: X-ray analysis methodology
The XMM Cluster Survey (XCS) is a serendipitous search for galaxy clusters
using all publicly available data in the XMM-Newton Science Archive. Its main
aims are to measure cosmological parameters and trace the evolution of X-ray
scaling relations. In this paper we describe the data processing methodology
applied to the 5,776 XMM observations used to construct the current XCS source
catalogue. A total of 3,675 > 4-sigma cluster candidates with > 50
background-subtracted X-ray counts are extracted from a total non-overlapping
area suitable for cluster searching of 410 deg^2. Of these, 993 candidates are
detected with > 300 background-subtracted X-ray photon counts, and we
demonstrate that robust temperature measurements can be obtained down to this
count limit. We describe in detail the automated pipelines used to perform the
spectral and surface brightness fitting for these candidates, as well as to
estimate redshifts from the X-ray data alone. A total of 587 (122) X-ray
temperatures to a typical accuracy of < 40 (< 10) per cent have been measured
to date. We also present the methodology adopted for determining the selection
function of the survey, and show that the extended source detection algorithm
is robust to a range of cluster morphologies by inserting mock clusters derived
from hydrodynamical simulations into real XMM images. These tests show that the
simple isothermal beta-profiles is sufficient to capture the essential details
of the cluster population detected in the archival XMM observations. The
redshift follow-up of the XCS cluster sample is presented in a companion paper,
together with a first data release of 503 optically-confirmed clusters.Comment: MNRAS accepted, 45 pages, 38 figures. Our companion paper describing
our optical analysis methodology and presenting a first set of confirmed
clusters has now been submitted to MNRA
Dissociable Components of Cognitive Control: An Event-Related Potential (ERP) Study of Response Inhibition and Interference Suppression
Background: Cognitive control refers to the ability to selectively attend and respond to task-relevant events while resisting interference from distracting stimuli or prepotent automatic responses. The current study aimed to determine whether interference suppression and response inhibition are separable component processes of cognitive control. Methodology/Principal Findings: Fourteen young adults completed a hybrid Go/Nogo flanker task and continuous EEG data were recorded concurrently. The incongruous flanker condition (that required interference suppression) elicited a more centrally distributed topography with a later N2 peak than the Nogo condition (that required response inhibition). Conclusions/Significance: These results provide evidence for the dissociability of interference suppression and response inhibition, indicating that taxonomy of inhibition is warranted with the integration of research evidence from neuroscience
Amyloid-b peptide on sialyl-LewisX-selectin-mediated membrane tether mechanics at the cerebral endothelial cell surface
Increased deposition of amyloid-b peptide (Ab) at the cerebral endothelial cell (CEC) surface has been implicated in enhancement of transmigration of monocytes across the brain blood barrier (BBB) in Alzheimer’s disease (AD). In this study, quantitative immunofluorescence microscopy (QIM) and atomic force microscopy (AFM) with cantilevers biofunctionalized
by sialyl-Lewisx (sLex) were employed to investigate Ab-altered mechanics of membrane tethers formed by bonding
between sLex and p-selectin at the CEC surface, the initial mechanical step governing the transmigration of monocytes. QIM results indicated the ability for Ab to increase p-selectin expression at the cell surface and promote actin polymerization in both bEND3 cells (immortalized mouse CECs) and human primary CECs. AFM data also showed the ability for Ab to increase cell stiffness and adhesion probability in bEND3 cells. On the contrary, Ab lowered the overall force of membrane tether formation (Fmtf), and produced a bimodal population of Fmtf, suggesting subcellular mechanical alterations in membrane tethering. The lower Fmtf population was similar to the results obtained from cells treated with an F-actin-disrupting drug, latrunculin A. Indeed, AFM results also showed that both Ab and latrunculin A decreased membrane stiffness, suggesting a
lower membrane-cytoskeleton adhesion, a factor resulting in lower Fmtf. In addition, these cerebral endothelial alterations induced by Ab were abrogated by lovastatin, consistent with its anti-inflammatory effects. In sum, these results demonstrated the ability for Ab to enhance p-selectin expression at the CEC surface and induce cytoskeleton
reorganization, which in turn, resulted in changes in membrane-cytoskeleton adhesion and membrane tethering, mechanical factors important in transmigration of monocytes through the BBB.This work was supported by Alzheimer Association Grant NIRG-06-24448; NIH Grant 1P01 AG18357, R21NS052385, 5R21AG032579 and in part by
1P01HL095486 and AHA 0835676N; ‘‘Bolashak’’ scholarship and Ministry of Education and Science of the Republic of Kazakhstan 1029/GF2. The funders had no
role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
- …