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Abstract Surface ocean carbon chemistry is changing rapidly. Partial pressures of carbon dioxide gas
(pCO2) are rising, pH levels are declining, and the ocean’s buffer capacity is eroding. Regional differences
in short-term pH trends primarily have been attributed to physical and biological processes; however,
heterogeneous seawater carbonate chemistry may also be playing an important role. Here we use Surface
Ocean CO2 Atlas Version 4 data to develop 12 month gridded climatologies of carbonate system variables
and explore the coherent spatial patterns of ocean acidification and attenuation in the ocean carbon sink
caused by rising atmospheric pCO2. High-latitude regions exhibit the highest pH and buffer capacity
sensitivities to pCO2 increases, while the equatorial Pacific is uniquely insensitive due to a newly defined
aqueous CO2 concentration effect. Importantly, dissimilar regional pH trends do not necessarily equate to
dissimilar acidity ([H+]) trends, indicating that [H+] is a more useful metric of acidification.

1. Introduction

A well-documented feature of the modern anthropogenic era is the rising partial pressure of carbon diox-
ide gas (pCO2) in the atmosphere primarily due to fossil fuel burning [Ciais et al., 2013]. In most ocean
regions, trends in sea surface pCO2 roughly parallel trends in atmospheric pCO2 as the ocean works to
maintain air-sea equilibrium [Takahashi et al., 2009; Bates et al., 2014; Sutton et al., 2014]. Due to the tight
negative correlation between pCO2 and pH [Caldeira and Wickett, 2003; Doney et al., 2009], sustained pH
declines associated with anthropogenic carbon dioxide (CO2) accumulation in the surface ocean (and its
interior) have been termed ocean acidification, as lowering pH values are synonymous with rising acidity.
Concerns about the stability of ocean carbon uptake and the consequences for transient and equilibrium
climate [Archer et al., 1998], as well as the impacts on marine organisms and ecosystems [Fabry et al.,
2008; Guinotte and Fabry, 2008; Doney et al., 2009], have led to significant advancements in carbon cycle
observing, synthesis, and simulation efforts [Le Quéré et al., 2015; Bakker et al., 2016; Landschützer et al.,
2016; Olsen et al., 2016; Talley et al., 2016]. Through these achievements, scientists are now beginning
to characterize trends in changing surface ocean chemistry using ocean time series [Bates et al., 2014;
Sutton et al., 2014], data synthesis [Lenton et al., 2012; Fay and McKinley, 2013; Lauvset et al., 2015;
Munro et al., 2015], and climate model [Lovenduski et al., 2015] approaches. Evidence of unique, short-term
trends in seawater chemistry has been identified in various ocean regions due to heterogeneity in pro-
cesses other than anthropogenic CO2 accumulation that influence sea surface pCO2 expression and air-
sea CO2 exchange. These processes include ocean circulation and mixing, regional freshwater cycles,
and biological processes. While the anthropogenic carbon signal primarily imprints on top of local
dynamics, variability or secular changes in these processes due to natural or anthropogenic effects can
attenuate or amplify the anthropogenic CO2 forcing [Lenton et al., 2012], causing a range of surface ocean
pCO2 trends and time scales over which the anthropogenic trend will emerge from natural variations
[McKinley et al., 2016, 2017].

In addition to process-driven pCO2 variability in the surface ocean, there are important thermodynamic
effects resulting from anthropogenic carbon accumulation that alter rates of chemical change in seawater.
Many of these effects have been mentioned in the literature; however, to the best of our knowledge, they
have not yet been synthesized or explored in a comprehensive manner in regard to ocean acidification.
Here we build upon theoretical constructs identified by prior investigators and evaluate coherent spatial
patterns of thermodynamically driven changes in surface ocean carbonate chemistry.
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2. Background Theory and New Expansions
2.1. Conceptual Construct

The ocean and atmosphere are constantly trying to reach equilibrium between their respective pCO2 values,
where seawater pCO2 is related to the aqueous CO2 concentration ([CO2 aq]) through Henry’s law via the
temperature-, salinity-, and pressure-dependent CO2 solubility constant (KH) [Weiss, 1974].

pCO2 ¼ KH � CO2 aq
� �

(1)

In seawater, CO2 aq can molecularly transform by reacting with water to create carbonic acid (H2CO3), which
often loses a hydrogen ion (H+) or two to become bicarbonate (HCO3

�) or carbonate (CO3
2�) ion, respectively

[Millero, 2007].

CO2 aq þ H2O↔ H2CO3 (2)

H2CO3 ↔ HCO3
� þ Hþ (3)

HCO3
� ↔ CO3

2� þ Hþ (4)

Dissolved inorganic carbon (DIC) represents the sum of all molecular derivatives (CO2 aq, H2CO3, HCO3
�, and

CO3
2�) resulting from the dissolution and subsequent hydration of CO2 gas in water. The transformation of

CO2 aq into alternative molecular forms maintains favorable conditions for more CO2 gas to dissolve. This
gives the ocean a large capacity to absorb and store carbon from the atmosphere, while the deprotonation
of carbonic acid (3) tightly links the process to ocean acidification.

Revelle and Suess [1957] estimated the average lifetime of a CO2 molecule in the atmosphere before being
absorbed by the sea and introduced a dimensionless parameter to account for the “peculiar buffer mechan-
ism of sea water” (p. 24). This parameter was later cemented in the literature by Sundquist et al. [1979],
Broecker et al. [1979], and Takahashi et al. [1980] as the Revelle factor (RF), which is defined as the fractional
change in seawater pCO2 divided by the fractional change in DIC for a given perturbation.

RF ¼
∂pCO2

�
pCO2

∂DIC=DIC
(5)

Since Revelle and Suess [1957] first introduced the concept of an oceanic carbon buffer, several methods have
been used to calculate [Broecker et al., 1979; Takahashi et al., 1980] and estimate [Sarmiento and Gruber,
2006] RF.

Low RF values indicate that a smaller relative change in pCO2 is required to elicit a change in DIC because it is
easier to move CO2 aq through the equilibrium reactions to form other molecular derivatives so that more
CO2 gas can enter the ocean. Thus, in the context of anthropogenic carbon uptake, more efficient transfer
of carbon from the atmosphere to ocean occurs in regions with low RF values [Sabine et al., 2004]. This
concept is analogous to that of buffering, which is the reduction in impact of a chemical change through
molecular rearrangement. As a result, a common moniker for the Revelle factor, which describes the effi-
ciency of molecular rearrangement, is the ocean buffer factor, where high buffering capacities are equivalent
to low RFs.

2.2. RF Nonlinearity and Sensitivities

A well-known characteristic of the RF response to increasing DIC concentrations is the asymmetric bell-
shaped curve that peaks close to where the concentration of DIC equals that of total alkalinity (TA),
declining thereafter [Takahashi et al., 1980; Frankignoulle, 1994; Egleston et al., 2010]. Figure 1a shows this
behavior for a range of fixed TA values across which the DIC concentration is varied. The shape of the RF
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curve has been well described previously by Takahashi et al. [1980] and Egleston et al. [2010], where the
buffer minimum (RF maximum) emerges halfway in between the two carbonate system pKa values
(where p = �log10; Ka = acid dissociation constants for equations (3) and (4)), near a pH of ~7.5.
Farther from this point in either direction, buffering increases and RF values decline. This characteristic
nonlinearity is significant because it indicates an amplification of the ocean’s response to anthropogenic
carbon accumulation through a nonlinear decrease in ocean buffer capacity as RF approaches its
maximum (RFmax) [Takahashi et al., 1980; Yi et al., 2001; Riebesell et al., 2009; Egleston et al., 2010; Omta
et al., 2010]. In the modern open ocean, RF values have not yet reached RFmax and are increasing in
response to carbon accumulation. RFmax is not significantly influenced by TA as nearly all curves in
Figure 1a display similar maximums (mean ± 1σ: 17.7 ± 0.3); however, it is highly sensitive to temperature
[Broecker et al., 1979; Sundquist et al., 1979] and salinity, increasing nonlinearly as both decline (Figure 1b).

While interesting, these RF characteristics are only relevant to anthropogenic climate change if the modern
ocean will be influenced by their effects. Figure 1c shows the relationships between RF and pCO2 for the same
seawater conditions in Figure 1b (see caption). Additionally, curves representing four unique ocean regions
are shown, which were estimated using 12 month climatologies derived from Version 4 of the Surface Ocean
CO2 Atlas (SOCAT-V4) that will be described in detail in the subsequent section. These ocean regions were
selected to broadly represent a range of chemical domains, including the Southern Ocean (south of 65°S),
the subtropical North Pacific Ocean (30°N–40°N, 130°W–150°E), the subpolar North Atlantic Ocean (55°N–
68°N, 80°E–0°), and the tropics (6°S–6°N). The curves were developed by perturbing pCO2 around the median
chemistry within each domain. Figure 1c indicates that RF grows more rapidly in fresh, cold water regions,
which exhibit the highest RFmax values, and more slowly in saline, warm water regions in response to rising
pCO2. This not only makes the low latitudes more efficient at anthropogenic carbon uptake due to their natu-
rally low RF values [Sabine et al., 2004] but also indicates that the latitudinal gradient in buffer capacity will
grow as pCO2 rises. Additionally, Figure 1c shows that ∂RF ∂pCO2

�1 is presently declining with added
pCO2, an effect that is more pronounced in fresher, colder waters. Thus, RF values in the high latitudes
may become more homogeneous over time as pCO2 rises.

Although nonlinear attenuation in the ocean buffer capacity [Takahashi et al., 1980] and its relation to global
climate [Yi et al., 2001] has long been recognized, spatial heterogeneity in the evolution of RF has important
implications for interpreting ocean chemistry changes across different chemical domains. Prior investigators
have touched on this topic [Orr, 2011; Bates et al., 2014; Lauvset et al., 2015]; however, it has not previously
been explored comprehensively from a global observational perspective. Having laid out pertinent RF char-
acteristics of the modern ocean, we will now evaluate the implications of spatially nonuniform RF growth
with respect to ocean acidification.

Figure 1. (a) Revelle factor (RF) versus DIC for surface waters at 10°C, salinity 34, and the fixed TA concentrations noted in
the legend. Circles show DIC = TA. (b) RFmax dependency on temperature and salinity for waters with 2200 μmol kg�1 TA
and pCO2 ranging from 25 to 1400 μatm. (c) RF versus pCO2 for the same conditions presented in Figure 1b (limited to the
100 to 600 μatm pCO2 range) where gray lines show different temperature and salinity conditions with the fresh (19), cold
(2°C) and saline (35), warm (30°C) curves highlighted in blue and red, respectively. Overlain are labeled curves that were
computed using median values of annual mean SSS, SST, and TA from grids within the Southern Ocean (SO), North Atlantic
(NA), North Pacific (NP), and tropics (T) sectors described in the text while varying input pCO2 across the x axis range.
Annual mean pCO2 and RF values from the grids within each sector are plotted. Dotted and solid vertical black lines show
preindustrial (280 μatm) and modern (400 μatm) atmospheric pCO2 levels, respectively.
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3. Methodology
3.1. Monthly Climatologies of Surface Ocean Carbonate Chemistry

To evaluate spatial and temporal variability in RF, as well as other carbonate system parameters, we rely on
CO2 fugacity (fCO2) data from Version 4 of the Surface Ocean CO2 Atlas (SOCAT-V4: http://www.socat.info/)
[Pfeil et al., 2013; Bakker et al., 2016], where fCO2 is much like pCO2 but takes into account the nonideal nature
of the gas. SOCAT-V4 fCO2 data with WOCE quality control flags of 2 (good) and SOCAT metadata flags A
through D were downloaded along with the accompanying sea surface salinity (SSS) and sea surface tem-
perature (SST) observations. By applying these quality control flags, the fCO2 data used in this analysis have
uncertainties of 5 μatm or less [Bakker et al., 2016]. This data set includes ~18.5 million quality-controlled fCO2

observations collected from 1957 to 2015, though not uniformly distributed in time or space. Due to the dec-
adal spread in observations, a sea surface anthropogenic pCO2 trend of 1.5 μatm yr�1 was used to normalize
the fCO2 observations to the reference year 2010, following Takahashi et al. [2009, 2014]. Use of a pCO2 trend
to normalize the fCO2 observations introduces an uncertainty that is negligible (<0.5 μtam) relative to the
measurement uncertainty of 5 μtam.

In order to constrain the inorganic carbon chemistry of seawater, a second carbonate system parameter is
required [Dickson and Riley, 1978; Millero, 2007]. TA was estimated from SOCAT-V4 SSS and SST observations
using equation (8) of the Locally Interpolated Alkalinity Regression suite of algorithms [Carter et al., 2016]
and combined with SSS, SST, and the 2010 normalized fCO2 observations to calculate DIC, pH, RF, and
pCO2 with the MATLAB program CO2SYS version 1.1 [Lewis and Wallace, 1998; van Heuven et al., 2011].
For all CO2SYS calculations the equilibrium constants of Lueker et al. [2000] and Dickson [1990] and the
boron-to-chlorinity ratio of Uppström [1974] (following the recommendation of Orr et al. [2015]) were
applied. Observations collected from the equatorial Pacific between 6°N and 6°S and 130°E and 80°W during
El Niño years (Table S1 in the supporting information; n = 2,521) were omitted from the analysis following
the approach of Takahashi et al. [2009, 2014]. The remaining data were gridded to a 3° × 3° global scale, and
monthly averages were made for each parameter before averaging across years to create a single 12 month
climatology for each grid cell. Uncertainties inherent to the methodology are described in the supporting
information Text S1, and Figure S2 shows the number of unique months represented in fCO2 climatologies
for each grid cell.

3.2. Validation Climatologies From Time Series Sites

Data from select time series locations where the seasonal cycle of carbonate system variables has been well
resolved were used to validate the gridded SOCAT-V4 climatologies. These sites include the Kuroshio
Extension Observatory (KEO; 32.3°N, 144.5°E; https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.nodc:
0100071; Fassbender et al., 2017), Ocean Station Papa (OSP; 50°N, 145°W; https://data.nodc.noaa.gov/cgi-
bin/iso?id=gov.noaa.nodc:0100074; Fassbender et al., 2016), Bermuda Atlantic Time Series Study (BATS;
32°N, 64°W; http://bats.bios.edu/), Hawaii Ocean Time Series (HOT; 22.75°N, 158°W; http://hahana.soest.
hawaii.edu/hot/hot-dogs/), Irminger Sea (64.3°N, 28°W; http://cdiac.ornl.gov/ftp/oceans/CARINA/Irminger
Sea/IrmingerSea_V2/), Iceland Sea (68°N, 12.66°W; http://cdiac.ornl.gov/ftp/oceans/CARINA/IcelandSea//
IcelandSea_V2/), and two regions in the Southern Ocean (SO; 57°S, 64°W and 61.5°S, 62°W; Munro et al.,
2015) north and south of the Antarctic Polar Front in Drake Passage. Measured, and for some sites estimated,
carbonate system parameters were used to calculate other parameters of interest. Details about the develop-
ment of these climatologies can be found in the supporting information Text S2.

4. Results and Discussion
4.1. Regional Variability and Trends in the Modern Ocean

Annual mean RF values determined from the SOCAT-V4 climatologies are shown in Figure 2a. The results are
similar to Sabine et al. [2004] showing high RF values near the poles that decline toward the equator, with
slightly elevated values in the eastern equatorial Pacific. Figures 2c and 2e show the annual mean distribu-
tions for DIC normalized to salinity 35 (nDIC) and pH, respectively. DIC is salinity normalized to more easily
compare carbon characteristics from neighboring regions that may experience different net precipitation
or evaporation levels and to compare our results with prior studies. nDIC exhibits a similar spatial pattern
to RF, while pH displays a unique pattern with some of the highest pH values found in the polar regions
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and subtropics, similar to the findings of Takahashi et al. [2014]. We also find that the lowest pH values occur
in the equatorial Pacific where old waters with high DIC content are upwelled to the surface. Annual mean RF,
nDIC, and pH values from select time series sites (section 3.2) are also shown in Figures 2a, 2c, and 2e.
Agreement between the time series and SOCAT-V4 climatologies (Table S2 and Figure S1) indicates that
the gridded values accurately represent carbonate chemistry conditions across a range of latitudes and
ocean realms.

To evaluate the modern sensitivity of these parameters to ocean CO2 uptake, we used the SOCAT-V4 clima-
tology annual mean SST, SSS, DIC, and pCO2 values in each grid to calculate changes to RF, nDIC, and pH
while varying the input pCO2 values by ±4 μatm using CO2SYS. This simulates approximately 4 years of mod-
ern atmospheric pCO2 growth at a rate of 2 μatm yr�1. The output RF, nDIC, and pH values were then
regressed against the input pCO2 values to determine the slope or rate of change. The results are shown in
Figures 2b, 2d, and 2f. Additionally, recent trend estimates for RF, nDIC, and pH from Bates et al. [2014],
Sutton et al. [2014], and Munro et al. [2015] were normalized by the associated pCO2 trends from each study
and are shown for comparison purposes. Agreement between the chemical perturbation results and time
series data in Figures 2b, 2d, and 2f (Table S3) indicates that chemical thermodynamics can explain most

Figure 2. Annual mean (a) RF (c) DIC normalized to salinity 35 (nDIC), and (e) pH. Stars in Figures 2a, 2c, and 2e represent independent estimates from six time
series locations, including KEO, OSP, BATS, HOT, Irminger Sea, and Iceland Sea. Triangles represent estimates from two regions in the Southern Ocean from
Munro et al. [2015]. Rates of change relative to pCO2 for (b) RF, (d) nDIC, and (f) pH derived from linear pCO2 perturbations on climatological annual mean values.
Circles, squares, and triangles in Figures 2b, 2d, and 2e represent independent pCO2-normalized estimates of RF, nDIC, and pH trends from Bates et al. [2014],
Sutton et al. [2014], and Munro et al. [2015], respectively. Trends from these studies include observations from El Niño years.
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of the spatial variability in observed trends. Areas with larger disagreement (i.e., equatorial Pacific ∂nDIC
∂pCO2

�1) suggest that processes other than pure thermodynamics are relevant.

RF values increase most rapidly with added pCO2 in high-latitude regions where RF values are already high
(Figure 2b), matching the expectation of higher ∂RF ∂pCO2

�1 in colder, fresher waters (Figure 1c).
Importantly, locations with similar RF values can express different ∂RF ∂pCO2

�1 and vice versa. Spatial varia-
bility in the annual mean RF (Figure 2a) reflects different regional efficiencies of ocean carbon uptake [Sabine
et al., 2004; Egleston et al., 2010], which is clearly displayed in Figure 2d. As expected, the change in nDIC per
1 μatm pCO2 increase (∂nDIC ∂pCO2

�1) shows a nearly opposite pattern as ∂RF ∂pCO2
�1, with larger DIC

changes in the tropics and lower DIC changes near the poles. Interestingly, ∂nDIC ∂pCO2
�1 is also very low

in the eastern equatorial Pacific even though nDIC and RF values in this region are similar to those through-
out the tropics and much lower than those in the high latitudes. Why is this? ∂nDIC ∂pCO2

�1 is depressed
near the equator due to an aqueous CO2 concentration ([CO2 aq]) effect. The equatorial upwelling of old,
DIC-rich water with low pH (Figure 2e) and high pCO2 content (Figure 3a) resulting from extensive reminer-
alization of organic matter causes CO2 aq to make up a larger fraction of the nDIC pool than in neighboring
regions with similar nDIC concentrations. This leads to a higher pCO2 nDIC

�1 (equation (1) and Figure 3b). So
although RF values are similar throughout the tropics, changing nDIC requires a larger magnitude pCO2

increase in the equatorial Pacific, leading to the observed insensitivity of nDIC to pCO2 growth along the
equator. This exemplifies that waters with nearly identical RF, RFmax (Figure 3c), and nDIC values can display
dissimilar carbon uptake efficiencies depending on what fraction of the DIC pool is composed of CO2 aq.

Finally, Figure 2f shows the change in pH per unit increase in pCO2, with an inverted color scale since more
negative ∂pH ∂pCO2

�1 values indicate larger pH declines. The biggest changes occur near the poles where RF
values are highest and waters are poorly buffered. The smallest changes occur in the equatorial Pacific even
though the RF values are similar to those in the tropics. This characteristic is also related to the [CO2 aq] effect
but in a slightly different way. pH is defined as the negative log10 of [H

+], which is strongly correlated with
pCO2. Thus, pCO2 increases lead to associated [H+] increases and pH declines across all ocean locations.
However, the change in [H+] resulting from a given pCO2 increase is nonuniform and is a function of the
temperature- and salinity-dependent carbonate system equilibrium constants as well as the local buffer
capacity, which makes ∂[H+] ∂pCO2

�1 larger at the poles (Figure 3d). On the other hand, ∂[H+] ∂pCO2
�1 is

Figure 3. Annual mean (a) pCO2 and (b) pCO2 DIC
�1. Stars represent independent estimates from six time series locations, including KEO, OSP, BATS, HOT, Irminger

Sea, and Iceland Sea. Triangles represent estimates from two regions in the Southern Ocean from Munro et al. [2015]. (c) RFmax. (d) ∂[H
+] ∂pCO2

�1 derived from
linear pCO2 perturbations as in Figure 2.
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fairly uniform across the tropics and subtropics. Why then is ∂pH ∂pCO2
�1 lowest in the equatorial Pacific?

This is due to variability in the background [H+], or pH, since the same [H+] change will translate to different
pH changes across the pH scale. In the equatorial Pacific where pH values are low (Figure 2e), the pH change
imposed by a given [H+] change will be smaller than in regions where the background pH is higher. For exam-
ple, a 2.3 nmol kg�1 increase in [H+] would cause waters with background pH values of 7.9 and 8.2 to
decrease to pH values of 7.83 and 8.07, respectively. This means that the same [H+] change caused a 0.07 unit
decline in waters with a starting pH of 7.9 and a 0.14 unit decline for waters with a starting pH of 8.2. Thus, the
[CO2 aq] effect coupled with the logarithmic nature of the pH scale yields the lowest ∂pH ∂pCO2

�1 values in
the eastern equatorial Pacific.

In regard to ocean acidification, biological organisms respond to [H+] rather than pH [e.g., Taylor et al., 2011;
Jokiel, 2016]; however, pH is often reported because it is a convenient scale to express large [H+] changes.
Despite being common practice, comparing pH trends from ocean regions with different annual mean pH
is not well suited to the evaluation of regional changes in ocean acidity and can be misleading (Figure S4).
[H+] is a more useful parameter since trends in acidity can be directly compared across ocean regions. At pre-
sent, many pH trends derived from time series sites are statistically indistinguishable [Bates et al., 2014], yet
the associated [H+] trends may vary more significantly (e.g., Figures 2f and 3d). Further, regions with dissimilar
pH trends may actually exhibit the same [H+] trends over time. [H+] will therefore be a more robust environ-
mental indicator than pH for assessing spatial patterns of ocean acidification.

To summarize, spatial variability in the RF sensitivity to pCO2 results in different rates of carbonate chemistry
change throughout the ocean as sea surface pCO2 increases (assuming all else constant). In particular, RF
values rise fastest in regions that have high RFmax values, namely the high latitudes. Observed trends in sur-
face ocean carbonate chemistry from time series sites [Bates et al., 2014; Sutton et al., 2014;Munro et al., 2015]
display a large-scale pattern consistent with the modern thermodynamic response (Figures 2b, 2d, and 2f).
However, regional changes in fresh water cycles, biogeochemistry, and circulation have also been identified
as contributing factors [Bates et al., 2014; Sutton et al., 2014;Munro et al., 2015]. Importantly, different rates of
DIC accumulation (∂nDIC ∂pCO2

�1) and pH decline (∂pH ∂pCO2
�1) can occur in regions with identical RF and

RFmax values that experience the same increase in seawater pCO2. This indicates that the carbonate system
response to accumulating anthropogenic carbon cannot be discerned from RF alone and depends on other
factors including the background pCO2 DIC

�1, pH, and RFmax. Finally, comparing trends in pH can bemislead-
ing when trying to understand rates and spatial patterns of ocean acidification. By using [H+] trends, these
challenges can be avoided.

4.2. Consideration of Long-Term Changes in the Mean State

In addition to modern chemical sensitivities to rising pCO2, it is important to consider spatial heterogeneity
in how carbonate chemistry will be altered over longer time periods. The highest ∂RF ∂pCO2

�1 values are
found in regions with elevated Rmax values, which are near the poles where waters are colder and fresher
(Figures 1c, 2b, and 3c). As a result, the addition of anthropogenic carbon is causing the polar oceans to more
rapidly approach their minimum buffer capacities. As the buffer capacity declines, sea surface pCO2 may rise
more rapidly over time [e.g., Thomas et al., 2007], assuming a constant atmospheric pCO2 growth rate, as it
becomes harder to move CO2 through the equilibrium reactions (i.e., Le Chatelier’s principle). This will lead
to faster [H+] increases and reduced (enhanced) CO2 sink (source) strengths as the air-sea disequilibrium is
eroded (grows). Thus, ocean acidification may accelerate in polar regions where high RF values continue to
increase with added anthropogenic carbon. The lower latitudes, by contrast, are much farther from RFmax,
and ∂RF ∂pCO2

�1 values are much lower. While it has long been recognized that the impacts of ocean acid-
ification may emerge first in the polar regions due to naturally elevated DIC content in these waters [Orr et al.,
2005], the thermodynamic expectation for more rapid rates of ocean acidification (Figure 3d) in these areas
[Orr, 2011] is not yet widely acknowledged. Importantly, the most rapid RF changes in response to rising sea
surface pCO2 have already occurred (Figure 1c), indicating slower rates of attenuation in the ocean carbon
sink per unit pCO2 increase—though the temporal evolution of seawater chemistry ultimately depends on
the atmospheric pCO2 growth rate.

Another important implication of spatial heterogeneity in ocean carbon uptake is that the more rapid accu-
mulation of anthropogenic carbon in surface waters of the tropics relative to the temperate and high
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latitudes (Figure 2d) will reduce the sea surface DIC gradient between regions. Transport of subtropical
waters poleward in western boundary currents (WBC) will still result in carbon uptake due to increased
pCO2 solubility upon cooling; however, the smaller DIC difference between transported and resident waters
will mean that less carbon uptake has to occur in the transported waters in order to reach the equilibrium DIC
of the higher latitude [Völker et al., 2002]. As a result, less anthropogenic carbon will be taken up in WBC
regions as the sea-air pCO2 difference is eroded over time. This is relevant because WBC regions are hubs
of anthropogenic carbon sequestration due to the formation and subsequent dispersal of mode waters into
the ocean interior [Sabine et al., 2004; Levine et al., 2011; Bates, 2012; Iudicone et al., 2016]. While Völker et al.
[2002] have explored this phenomenon in the North Atlantic Ocean, further evaluations may be warranted in
the context of accelerating degradation of the latitudinal DIC gradient, which may cause surface ocean
carbonate chemistry to become more uniform over time.

5. Conclusions

Prior investigators have shown the importance of freshwater balances, physical processes, biogeochemical
cycling, wind speed, and large-scale climate variability in regional trends of surface ocean carbonate chem-
istry [Lenton et al., 2012; Bates et al., 2014; Sutton et al., 2014; Lauvset et al., 2015;Munro et al., 2015]. In addition
to these process-driven factors, chemical thermodynamics imparts a coherent signature of change that must
be incorporated into the interpretation of ocean carbon cycle responses to anthropogenic forcing. Our find-
ings exemplify the potential for nonuniform ocean acidification and attenuation of the ocean carbon sink as
the ocean keeps pace with rising atmospheric pCO2—in the absence of changes to any other processes.
Further, regions with identical characteristics (RF, RFmax, and nDIC) can display dissimilar carbon uptake effi-
ciencies depending on the chemical speciation of the DIC pool. This nuance can lead to significant regional
differences in the rate of anthropogenic carbon uptake and pH change as ocean pCO2 grows. Spatial varia-
bility in pH trends should be anticipated, and the use of [H+] trends will be necessary to accurately decipher
regional differences in ocean acidification. High latitudes are experiencing the most rapid declines in buffer
capacity. The acute sensitivity of RF to temperature and salinity equates to significant uncertainty in how
polar regions will respond in the coming decades, as warming and freshening have opposing effects on
RF. Careful consideration of the thermodynamic drivers of ocean change is necessary to better characterize
the sensitivities of ocean carbon uptake and acidification rates to the persistent climb in atmospheric pCO2.
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