675 research outputs found
Generic Finite Size Enhancement of Pairing in Mesoscopic Fermi Systems
The finite size dependent enhancement of pairing in mesoscopic Fermi systems
is studied under the assumption that the BCS approach is valid and that the two
body force is size independent. Different systems are investigated such as
superconducting metallic grains and films as well atomic nuclei. It is shown
that the finite size enhancement of pairing in these systems is in part due to
the presence of a surface which accounts quite well for the data of nuclei and
explains a good fraction of the enhancement in Al grains.Comment: Updated version 17/02/0
Neutrino mean free path and in-medium nuclear interaction
Neutrinos produced during the collapse of a massive star are trapped in a
nuclear medium (the proto-neutron star). Typically, neutrino energies (10-100
MeV) are of the order of nuclear giant resonances energies. Hence, neutrino
propagation is modified by the possibility of coherent scattering on nucleons.
We have compared the predictions of different nuclear interaction models. It
turns out that their main discrepancies are related to the density dependence
of the k-effective mass as well as to the onset of instabilities as density
increases. This last point had led us to a systematic study of instabilities of
infinite matter with effective Skyrme-type interactions. We have shown that for
such interactions there is always a critical density, above which the system
becomes unstable.Comment: 4 pages, 4 figures, Proceedings of the 17th Divisional Conference on
Nuclear Physics in Astrophysics (NPDC17), 30th September - 4th October 2002,
ATOMKI, Debrecen, Hungary, to appear in Nuclear Physics
Optical detection of a BCS transition of Lithium-6 in harmonic traps
We study the detection of a BCS transition within a sample of Lithium--6
atoms confined in a harmonic trap. Using the local density approximation we
calculate the pair correlation function in the normal and superfluid state at
zero temperature. We show that the softening of the Fermi hole associated with
a BCS transition leads to an observable increase in the intensity of
off--resonant light scattered from the atomic cloud at small angles.Comment: 7 pages, 3 figures, submitted to Europhysics Letter
Experimentally induced innovations lead to persistent culture via conformity in wild birds.
Journal ArticleResearch Support, Non-U.S. Gov't© 2014 Macmillan Publishers Limited. All Rights ReservedThis a post-print, author-produced version of an article accepted for publication in Nature. The definitive version is available at http://www.nature.com/nature/index.htmlIn human societies, cultural norms arise when behaviours are transmitted through social networks via high-fidelity social learning. However, a paucity of experimental studies has meant that there is no comparable understanding of the process by which socially transmitted behaviours might spread and persist in animal populations. Here we show experimental evidence of the establishment of foraging traditions in a wild bird population. We introduced alternative novel foraging techniques into replicated wild sub-populations of great tits (Parus major) and used automated tracking to map the diffusion, establishment and long-term persistence of the seeded innovations. Furthermore, we used social network analysis to examine the social factors that influenced diffusion dynamics. From only two trained birds in each sub-population, the information spread rapidly through social network ties, to reach an average of 75% of individuals, with a total of 414 knowledgeable individuals performing 57,909 solutions over all replicates. The sub-populations were heavily biased towards using the technique that was originally introduced, resulting in established local traditions that were stable over two generations, despite a high population turnover. Finally, we demonstrate a strong effect of social conformity, with individuals disproportionately adopting the most frequent local variant when first acquiring an innovation, and continuing to favour social information over personal information. Cultural conformity is thought to be a key factor in the evolution of complex culture in humans. In providing the first experimental demonstration of conformity in a wild non-primate, and of cultural norms in foraging techniques in any wild animal, our results suggest a much broader taxonomic occurrence of such an apparently complex cultural behaviour.BBSRCERCUppsala UniversityAustralian Postgraduate Awar
Search for 2νββ decay of ^(136)Xe to the 0^+^1 excited state of ^(136)Ba with the EXO-200 liquid xenon detector
EXO-200 is a single phase liquid xenon detector designed to search for neutrinoless ββ decay of ^(136)Xe to the ground state of ^(136)Ba. We report here on a search for the two-neutrino ββ decay of 136Xe to the first 0+ excited
state, 0^+_1, of ^(136)Ba based on a 100 kg yr exposure of ^(136)Xe. Using a specialized analysis employing a machine
learning algorithm, we obtain a 90% CL half-life sensitivity of 1.7 × 10^(24) yr. We find no statistically significant evidence for the 2νββ decay to the excited state resulting in a lower limit of T^(2ν)_(1/2)(0^+ → 0^+_1) > 6.9 ×10^(23) yr at 90% CL. This observed limit is consistent with the estimated half-life of 2.5 × 10^(25) yr
Isospin non-equilibrium in heavy-ion collisions at intermediate energies
We study the equilibration of isospin degree of freedom in intermediate
energy heavy-ion collisions using an isospin-dependent BUU model. It is found
that there exists a transition from the isospin equilibration at low energies
to non-equilibration at high energies as the beam energy varies across the
Fermi energy in central, asymmetric heavy-ion collisions. At beam energies
around 55 MeV/nucleon, the composite system in thermal equilibrium but isospin
non-equilibrium breaks up into two primary hot residues with N/Z ratios closely
related to those of the target and projectile respectively. The decay of these
forward-backward moving residues results in the strong isospin asymmetry in
space and the dependence of the isotopic composition of fragments on the N/Z
ratios of the target and projectile. These features are in good agreement with
those found recently in experiments at NSCL/MSU and TAMU, implications of these
findings are discussed.Comment: 9 pages, latex, + 3 figures available upon reques
Surface Incompressibility from Semiclassical Relativistic Mean Field Calculations
By using the scaling method and the Thomas-Fermi and Extended Thomas-Fermi
approaches to Relativistic Mean Field Theory the surface contribution to the
leptodermous expansion of the finite nuclei incompressibility has been
self-consistently computed. The validity of the simplest expansion, which
contains volume, volume-symmetry, surface and Coulomb terms, is examined by
comparing it with self-consistent results of the finite nuclei
incompressibility for some currently used non-linear sigma-omega parameter
sets. A numerical estimate of higher-order contributions to the leptodermous
expansion, namely the curvature and surface-symmetry terms, is made.Comment: 18 pages, REVTeX, 3 eps figures, changed conten
Systematics of Fission Barriers in Superheavy Elements
We investigate the systematics of fission barriers in superheavy elements in
the range Z = 108-120 and N = 166-182. Results from two self-consistent models
for nuclear structure, the relativistic mean-field (RMF) model as well as the
non-relativistic Skyrme-Hartree-Fock approach are compared and discussed. We
restrict ourselves to axially symmetric shapes, which provides an upper bound
on static fission barriers. We benchmark the predictive power of the models
examining the barriers and fission isomers of selected heavy actinide nuclei
for which data are available. For both actinides and superheavy nuclei, the RMF
model systematically predicts lower barriers than most Skyrme interactions. In
particular the fission isomers are predicted too low by the RMF, which casts
some doubt on recent predictions about superdeformed ground states of some
superheavy nuclei. For the superheavy nuclei under investigation, fission
barriers drop to small values around Z = 110, N = 180 and increase again for
heavier systems. For most of the forces, there is no fission isomer for
superheavy nuclei, as superdeformed states are in most cases found to be
unstable with respect to octupole distortions.Comment: 17 pages REVTEX, 12 embedded eps figures. corrected abstrac
Mean field theory for global binding systematics
We review some possible improvements of mean field theory for application to
nuclear binding systematics. Up to now, microscopic theory has been less
successful than models starting from the liquid drop in describing accurately
the global binding systematics. We believe that there are good prospects to
develop a better global theory, using modern forms of energy density
functionals and treating correlation energies systematically by the RPA.Comment: RevTex, 17 pages, 5 eps figures. To be published in Yadernaya Fizika,
special edition for the 90th birthday of Professor A.B. Migda
- …
