370 research outputs found

    Competence of a glacial stream

    Get PDF
    CER61RKF2.Includes bibliographical references (pages 6-7).January 1961.Measurements of particle size and velocity were made in White River below Emmons Glacier, Mt. Rainier, Washington. Boulders up to 1.8 feet in diameter were moved by velocities of 10 fps, less than would be predicted from the sixth power law

    The Green Horizons Scoreboard: indicators on innovation for sustainable development

    Get PDF

    Molecular corridors and kinetic regimes in the multiphase chemical evolution of secondary organic aerosol

    Get PDF
    The dominant component of atmospheric, organic aerosol is that derived from the oxidation of volatile organic compounds (VOCs), so-called secondary organic aerosol (SOA). SOA consists of a multitude of organic compounds, only a small fraction of which has historically been identified. Formation and evolution of SOA is a complex process involving coupled chemical reaction and mass transport in the gas and particle phases. Current SOA models do not embody the full spectrum of reaction and transport processes, nor do they identify the dominant rate-limiting steps in SOA formation. Based on molecular identification of SOA oxidation products, we show here that the chemical evolution of SOA from a variety of VOC precursors adheres to characteristic "molecular corridors" with a tight inverse correlation between volatility and molar mass. The slope of these corridors corresponds to the increase in molar mass required to decrease volatility by one order of magnitude (-dM / dlogC_0). It varies in the range of 10–30 g mol^(−1), depending on the molecular size of the SOA precursor and the O : C ratio of the reaction products. Sequential and parallel reaction pathways of oxidation and dimerization or oligomerization progressing along these corridors pass through characteristic regimes of reaction-, diffusion-, or accommodation-limited multiphase chemical kinetics that can be classified according to reaction location, degree of saturation, and extent of heterogeneity of gas and particle phases. The molecular corridors and kinetic regimes help to constrain and describe the properties of the products, pathways, and rates of SOA evolution, thereby facilitating the further development of aerosol models for air quality and climate

    Evaluation of the SeaWinds scatterometer for regional monitoring of vegetation phenology

    Get PDF
    Phenology, or the seasonality of recurring biological events such as vegetation canopy development and senescence, is a primary constraint on global carbon, water and energy cycles. We analyzed multiseason Ku-band radar backscatter measurements from the SeaWinds-on-QuikSCAT scatterometer to determine canopy phenology and growing season vegetation dynamics from 2000 to 2002 at 27 sites representing major global land cover classes and regionally across most of North America. We compared these results with similar information derived from the MODIS leaf area index (LAI) data product (MOD-15A2). In site-level linear regression analysis, the correspondence between radar backscatter and LAI was significant (p \u3c 0.05) at most but not all sites and was generally higher (R2 \u3e 0.5) for sites with relatively low LAI or where the seasonal range in LAI was large (e.g., \u3e3 m2 m−2). The SeaWinds instrument also detected generally earlier onset of vegetation canopy growth in spring than the optical/near-infrared (NIR) based LAI measurements from MODIS, though the timing of canopy senescence and the end of the growing season were more similar. Over North America, the correlation between the two time series was stratified largely by land cover class, with higher correlations (R ∼ 0.7–0.9) for most cropland, deciduous broadleaf forest, crop/natural vegetation mosaic land cover, and some grassland. Lower correlations were observed for open shrubland and evergreen needleleaf forest. Overall, the results indicate that SeaWinds backscatter is sensitive to growing season canopy dynamics across a range of broadleaf vegetation types and provides a quantitative view that is independent of optical/NIR remote sensing instruments

    Estimation of Carbon Sequestration by Combining Remote Sensing and Net Ecosystem Exchange Data for Northern Mixed-Grass Prairie and Sagebrush–Steppe Ecosystems

    Get PDF
    Carbon sequestration was estimated a northern mixed-grass prairie site and a sagebrush–steppe site in southeastern Wyoming using an approach that integrates remote sensing, CO2 flux measurements, and meteorological data. Net ecosystem exchange (NEE) of CO2 was measured using aircraft and ground flux techniques and was linearly related to absorbed photosynthetically active radiation (APAR). The slope of this relationship is the radiation use efficiency (ε = 0.51 g C/MJ APAR); there were no significant differences in the regression coefficients between the two sites. Furthermore, ecosystem chamber measurements of total respiration in 1998 and 1999 were used to develop a functional relationship with daily average temperature; the Q10 of the relationship was 2.2. Using the Advanced Very High Resolution radiometer. Normalized Difference Vegetation Index and meteorological data, annual gross primary production and respiration were calculated from 1995 to 1999 for the two sites. Overall, the sagebrush– steppe site was a net carbon sink, whereas the northern mixed-grass prairie site was in carbon balance. There was no significant relationship between NEE and APAR for a coniferous forest site, indicating this method for scaling up CO2 flux data may be only applicable to rangeland ecosystems. The combination of remote sensing with data from CO2 flux networks can be used to estimate carbon sequestration regionally in rangeland ecosystems

    Asynchronous behavior of outlet glaciers feeding Godthåbsfjord (Nuup Kangerlua) and the triggering of Narsap Sermia's retreat in SW Greenland

    Get PDF
    We assess ice loss and velocity changes between 1985 and 2014 of three tidewater and fiveland terminating glaciers in Godthabsfjord (Nuup Kangerlua), Greenland. Glacier thinning accounted for 43.8 +/- 0.2 km(3) of ice loss, equivalent to 0.10 mm eustatic sea-level rise. An additional 3.5 +/- 0.3 km(3) was lost to the calving retreats of Kangiata Nunaata Sermia (KNS) and Narsap Sermia (NS), two tidewater glaciers that exhibited asynchronous behavior over the study period. KNS has retreated 22 km from its Little Ice Age (LIA) maximum (1761 AD), of which 0.8 km since 1985. KNS has stabilized in shallow water, but seasonally advects a 2 km long floating tongue. In contrast, NS began retreating from its LIA moraine in 2004-06 (0.6 km), re-stabilized, then retreated 3.3 km during 2010-14 into an over-deepened basin. Velocities at KNS ranged 5-6 km a(-1), while at NS they increased from 1.5 to 5.5 km a(-1) between 2004 and 2014. We present comprehensive analyses of glacier thinning, runoff, surface mass balance, ocean conditions, submarine melting, bed topography, ice melange and conclude that the 2010-14 NS retreat was triggered by a combination of factors but primarily by an increase in submarine melting.We thank W. Dryer and D. Podrasky for assistance with fieldwork and L. Kenefic for assisting with digitizing glacier front positions. CH2 M HILL Polar Services and Air Greenland provided logistics support. The SPOT-5 images used for the 2008 DEM were provided by the SPIRIT program (Centre National d'Etudes Spatiales, France). The DigitalGlobe Worldview images used for the 2014 DEM were obtained from P. Morin. Terminus positions were derived from Landsat images courtesy of the U.S. Geological Survey. Funding was provided by the US National Science Foundation (NSF) Office of Polar Programs (OPP) grants NSF PLR-0909552 and NSF PLR-0909333. Cassotto is supported by NASA under the Earth and Space Science Fellowship Program (Grant NNX14AL29H). K. K. Kjeldsen acknowledges support from the Danish Council Research for Independent Research (grant no. DFF-409000151). K. Kjaer is thanked for his support during the earlier phases of this study. On-ice weather stations are operated by GEUS (Denmark) within the Programme for Monitoring of the Greenland Ice Sheet (PROMICE). J. Mortensen acknowledges support from IIKNN (Greenland), DEFROST project of the Nordic Centre of Excellence program "Interaction between Climate Change and the Cryosphere" and the Greenland Ecosystem Monitoring Programme (www. g-e-m. dk).S. Rysgaard was funded by the Canada Excellence Research Chair Programme. Additional funding was provided by the Geophysical Institute, University of Alaska Fairbanks, and Greenland Climate Research Centre. Scientific editor H. Fricker and reviewers H. Jiskoot and G. Cogley provided very constructive feedback that helped improve the paper.Peer ReviewedRitrýnt tímari

    Numerical simulation of bar and island morphodynamics in anabranching mega-rivers

    Get PDF
    Onlineopen article ©2013 American Geophysical Union.Bar and island morphodynamics in the world's largest anabranching rivers are investigated using a new numerical model of hydrodynamics, sediment transport, bank erosion, and floodplain development, operating over periods of several hundred years. Simulated channel morphology is compared to that of natural rivers and shown to be realistic, both in terms of the statistical characteristics of channel width, depth, and bar shape distributions, and mechanisms of unit bar, compound bar, and island evolution. Results demonstrate that bar and island stability may be sensitive to hydrologic regime, because greater variability in flood magnitude encourages the formation of emergent bars that can be stabilized by vegetation colonization. Simulations illustrate a range of mechanisms of unit bar generation that are linked to local bed or bank instabilities. This link may explain the reduced frequency of unit bars observed in some large anabranching rivers that are characterized by stable vegetated islands and slow rates of channel change. Model results suggest that the degree to which sand-sized bed material is carried in suspension likely represents an important control on bar morphodynamics and channel network evolution, because of its influence on sand transport direction. Consequently, differences in the partitioning of the total sand load between bed load and suspension may provide a partial explanation for contrasting styles of anabranching in the world's largest sand-bed rivers. These results highlight a need for spatially-distributed flow and sediment transport data sets from large rivers, in order to support improved parameterizations of sand transport mechanics in morphodynamic models.Natural Environment Research Council (NERC). Grant Numbers: NE/I023228/1, NE/E016022/

    Integral Abutment Bridges under Thermal Loading: Field Monitoring and Analysis

    Get PDF
    Integral abutment bridges (IABs) have gained popularity throughout the United States due to their low construction and maintenance costs. Previous research on IABs has been heavily focused on substructure performance, leaving a need for better understanding of IAB superstructure behavior and interdependent effects. This report presents findings of a field monitoring program for two Illinois IABs (which supplements findings from a parametric study portion of the overall project that are summarized in a previous volume). The field monitoring program included collecting data about (i) global bridge movements; (ii) pile, deck, girder, and approach-slab strains; and (iii) rotations at different abutment interfaces. Field results have been compared to finite-element models of each bridge in order to provide further insight into IAB behavior. Field monitoring results corroborated that IAB longitudinal expansion and contraction is somewhat less than theoretical free expansion and contraction, and is influenced by bridge skew as well. Significant girder stresses were observed, particularly at the girder bottom flange, which should be considered in design. Pile strain values indicate there is likely some reserve pile-deformation capacity typically available.IDOT-R27-115Ope

    A large impact crater beneath Hiawatha Glacier in northwest Greenland.

    Get PDF
    We report the discovery of a large impact crater beneath Hiawatha Glacier in northwest Greenland. From airborne radar surveys, we identify a 31-kilometer-wide, circular bedrock depression beneath up to a kilometer of ice. This depression has an elevated rim that cross-cuts tributary subglacial channels and a subdued central uplift that appears to be actively eroding. From ground investigations of the deglaciated foreland, we identify overprinted structures within Precambrian bedrock along the ice margin that strike tangent to the subglacial rim. Glaciofluvial sediment from the largest river draining the crater contains shocked quartz and other impact-related grains. Geochemical analysis of this sediment indicates that the impactor was a fractionated iron asteroid, which must have been more than a kilometer wide to produce the identified crater. Radiostratigraphy of the ice in the crater shows that the Holocene ice is continuous and conformable, but all deeper and older ice appears to be debris rich or heavily disturbed. The age of this impact crater is presently unknown, but from our geological and geophysical evidence, we conclude that it is unlikely to predate the Pleistocene inception of the Greenland Ice Sheet
    corecore