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Evaluation of the SeaWinds scatterometer for regional monitoring of 
vegetation phenology
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and Mark Fahnestock,
Received 14 August 2005; revised 5 January 2006; accepted 20 April 2006; published 1 September 2006.

[i] Phenology, or the seasonality of recurring biological events such as vegetation canopy 
development and senescence, is a primary constraint on global carbon, water and energy 
cycles. We analyzed multiseason Ku-band radar backscatter measurements from the 
SeaWinds-on-QuikSCAT scatterometer to determine canopy phenology and growing 
season vegetation dynamics from 2000 to 2002 at 27 sites representing major global land 
cover classes and regionally across most of North America. We compared these results 
with similar information derived from the MODIS leaf area index (LAI) data product 
(MOD-15A2). In site-level linear regression analysis, the correspondence between radar 
backscatter and LAI was significant (p < 0.05) at most but not ail sites and was generally 
higher (R^ > 0.5) for sites with relatively low LAI or where the seasonal range in 
LAI was large (e.g., >3 m^ m^^). The SeaWinds instrument also detected generally earlier 
onset of vegetation canopy growth in spring than the opticai/near-infrared (NIR) based 
LAI measurements from MODIS, though the timing of canopy senescence and the end of 
the growing season were more similar. Over North America, the correlation between the 
two time series was stratified largely by land cover class, with higher correlations 
(R 0.7-0.9) for most cropland, deciduous broadieaf forest, crop/natural vegetation 
mosaic land cover, and some grassland. Lower correlations were observed for open 
shrubiand and evergreen needieieaf forest. Overall, the results indicate that SeaWinds 
backscatter is sensitive to growing season canopy dynamics across a range of broadieaf 
vegetation types and provides a quantitative view that is independent of opticai/NIR 
remote sensing instruments.
Citation: Erolking, S., T. Milliman, K. McDonald, J. Kimball, M. Zhao, and M. Eahnestock (2006), Evaluation of the SeaWinds 
scatterometer for regional monitoring of vegetation phenology, J. Geophys. Res., I l l ,  D17302, doi:10.1029/2005JD006588.
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Moulin et a l,  1997; Jenkins et a l,  2002; Zhang et a l, 2004] 
and, coupled with ecosystem models, vegetation produetiv
ity [e.g., Myneni et a l, 1997; Tucker et a l ,  2001; Hicke et 
a l,  2002; Nemani et a l ,  2003; Potter et a l, 2003; Slayback 
et a l,  2003]. However, satellite based monitoring o f vege
tation activity at optieal and near-infrared wavelengths is 
compromised by cloud cover, smoke and aerosol contam
ination over much of the globe, and requires relatively 
coarse (8 -1 6  day) temporal compositing o f the data to 
reduce atmospheric effects. Seasonal snow cover, low solar 
illumination and solar elevation angles also limit vegetation 
monitoring at high latitudes, especially during the growing 
season margins when vegetation changes are large (e.g., 
bud-burst and eanopy growth and seneseenee) [Cihlar et a l, 
1998; Vermote et a l,  2002; Zhao et a l ,  2005].

[4] Satellite microwave remote sensing has been used for 
landseape- to global-seale assessments o f  a variety of 
biophysical parameters ineluding soil moisture [e.g., Magagi 
and Kerr, 1997; Wagner et a l, 1999a; Wagner and Scipal, 
2000], snow cover [e.g., Nghiem and Tsai, 2001], freeze/ 
thaw state [e.g., Wismann, 2000; Kimball et a l ,  2004a, 
2004b; McDonald et a l, 2004; McDonald and Kimball, 
2005; Rawlins et a l,  2005], and vegetation dynamies [e.g.. 
Prison and Mougin, 1996; Magagi and Kerr, 1997; Hardin 
and Jackson, 2003]. Radar sensitivity to these parameters 
arises from the strong dependence o f radar backscatter to 
surface dieleetrie properties, which are strongly dependent 
upon the liquid water content of the landseape. Shorter 
microwave wavelengths (e.g., Ku- and C-band) are particu
larly sensitive to the vegetation eanopy strueture and mois
ture beeause o f the similar eharaeteristie sizes of leaves and 
branches, which increases the radar backscatter response to 
these eanopy constituents [Ulaby et a l, 1982; Elachi, 1987]. 
Microwave radar remote sensing instruments illuminate the 
land siufaee independent of solar radiation, and are largely 
insensitive to cloud cover, smoke and other atmospheric 
aerosols. Satellite radar remote sensing thus has the potential 
for nearly continuous global monitoring, day or night and 
under virtually all weather conditions, with monitoring 
capabilities constrained primarily by sensor design and 
orbital geometry. Current satellite seatterometers provide 
approximate daily global eoverage at ^25-km  spatial reso
lution, with greater sampling frequency at higher latitudes. 
Image reeonstruetion techniques ean be employed to 
enhance spatial resolution at the expense o f  temporal 
resolution [Early and Long, 2001].

[5] Prison and Mougin [1996] analyzed monthly ERS-1 
C-band if=  5.3 GHz, X = 5.7 cm) backscatter and AVHRR 
Global Area Coverage (GAC) Global Vegetation Index 
(GVI) data from spring 1992 through spring 1994 for 17 
sites (^5 0  km x 50 km) distributed globally; they found 
that seasonality in radar backscatter and the GVI was well 
correlated for most sites, with semiarid and boreal regions 
showing the largest seasonality in radar backscatter and 
environmental parameters (i.e., moisture and temperature, 
respectively). Abdel-Messeh and Quegan [2000] evaluated 
ERS scatterometer backscatter data globally and found 
strong backscatter temporal variability for several vegeta
tion classes. They attributed grassland backscatter variabil
ity to changes in plant phenology, soil moisture, snow and 
freeze/thaw processes, and agrieultiual practices. They 
attributed savanna backscatter variability to rainfall events

and vegetation growth. They attributed northern high- 
latitude variability to snowfall and snowmelt processes. 
Both o f  these studies showed relatively little seasonal 
backscatter variability in tropical forests. Wagner et al. 
[1999b] evaluated ERS-1 scatterometer data across the 
Iberian Peninsula and found that radar backscatter depen
dence on sensor ineidenee angle showed a seasonal pattern 
for crops and grasslands, but not for forests, shrubs, and arid 
land vegetation; they concluded that backscatter temporal 
variability was more strongly assoeiated with soil moisture 
than vegetation dynamies. Woodhouse et al. [1999] found a 
small seasonal amplitude (0.6 dB) in ERS-1 scatterometer 
backscatter for a 50 km x 50 km tropical rain forest site in 
Guyana that was correlated with monthly precipitation; the 
correlation was not evident at shorter timeseales, which may 
reflect the spatial scale discrepancy between local weather 
station (point) and scatterometer (area-average) data.

[e] Hardin and Jackson [2003] analyzed year 2000 Sea
Winds Ku-band i f  = 13.4 GHz, X = 2.24 cm) data for 
relatively intact equatorial savanna grassland sites (areas 
180,000 to 530,000 km^) in northern South America. For 
each site, they constructed (1) monthly mean backscatter for 
both horizontal (HH) and vertical ( W )  polarizations stan
dardized to a 50° ineidenee angle, (2) mean AVHRR NDVI, 
and (3) mean air temperature and total precipitation time 
series. They also quantified the fractional cover o f Gleysol 
and Ferralsol soil types for each site. They found that the 
Ku-band backscatter for both polarizations was well corre
lated with the NDVI (R = 0.52-0.74), with a stronger 
eorrespondenee for the site with the largest NDVI. The 
correlations were improved somewhat by adding precipita
tion and soil type in a multiple linear regression, while air 
temperature had no significant impact on the correlation for 
these tropical sites.

[7] In this paper we extend the analysis o f Hardin and 
Jackson [2003] in five ways. First, we analyze the relation
ship between SeaWinds backscatter and MODIS (MOD-15) 
LAI 8-day time series across a wide range o f  global 
vegetation types and geographical locations. Second, we 
analyze multiyear (2000-2002) data to determine if  LAI 
and radar baekseatter show similar variability over multiple 
growing seasons. Third, we extract and compare phenolog- 
ieal timing signals (spring leaf flush and fall leaf senes
eenee) from both data series. Fourth, we use the Michigan 
Microwave Canopy Scattering radar baekseatter model 
(MIMICS) [Ulaby et a l ,  1990] to interpret the Ku-band 
baekseatter seasonal response to eanopy LAI and vegetation 
and siufaee moisture. Fifth, we conduct a regional analysis 
of North America to determine if  there are coherent spatial 
patterns in the correlation between Ku-band baekseatter and 
LAI. Our objective is to evaluate the potential for SeaWinds 
baekseatter to detect vegetation phenology, as a necessary 
first step before attempting to develop a robust and reliable 
phenology algorithm.

2. Methods
2.1. Site-Level Analysis

[s] We selected 27 sites spanning a range o f global land 
cover types, each representing a 50 km x 50 km area with 
relatively homogeneous vegetation cover (>80% classified 
as a single vegetation class). We defined vegetation cover

2 of 14



D17302 FROLKING ET AL.: VEGETATION GROWING SEASON SIGNAL SEEN BY SEAWINDS D17302

Table 1. Location and Dominant Vegetation of the 27 Sites, Range of Remote Sensing Observations (2000-2002), and Linear 
Regression Statistics

Site“ Location
MODIS LAI Range,'’

2 -2  m  m
Seawinds ct° Range,'’ 

dB R^ p  Value ai «2
EB-1 S. America (7.0°S, 67.0°W) 5 .0 -6 .5 -9 .7  to -8 .8 0.00 0.718 -9 .3 1 0.02 128
EB-2 S. America (1.0°S, 70.0°W) 5 .0 -6 .0 -9 .3  to -8 .2 0.01 0.425 -8 .4 0 -0 .0 7 128
EB-3 Africa (0.5°S, 24.5°E) 4 .6 -6 .5 -9 .0  to -8 .0 0.00 0.558 -8 .3 3 -0 .0 3 127
EB-4 Asia (2.0°N, 114.5°E) 4 .3 -5 .9 -8 .5  to -7 .7 0.00 0.724 -8 .0 2 -0 .0 1 128
EN-1 N. America (53.0°N, 124.0°W) 2 .0 -3 .7 -1 4 .4  to -1 3 .2 0.13 0.011 -1 4 .5 2 0.22 51
EN-2 N. America (47.5°N, 115.5°W) 1 .8-4 .7 -1 3 .5  to -1 2 .6 0.69 <0.001 -13 .71 0.22 59
EN-3 Europe (65.0°N, 18.0°E) 1 .8-3 .9 -1 4 .1  to -1 2 .5 0.14 0.004 -1 3 .8 6 0.23 57
EN-4 N. America (54.0°N, 118.0°W) 1 .6-3 .4 -1 4 .1  to -1 2 .8 0.23 <0.001 -1 4 .2 0 0.29 51
DN-1 Asia (61.5°N, 132.0°E) 0 .8 -4 .6 -1 3 .6  to -1 2 .0 0.19 0.003 -1 3 .0 0 0.13 44
DB-1 N. America (41.5°N, 78.5°W) 1.2-6 .1 -1 1 .6  to -1 0 .0 0.35 <0.001 -1 1 .4 9 0.14 76
DB-2 N. America (39.5°N, 81.0°W) 1 .0-6 .2 -1 2 .1  to -9 .4 0.75 <0.001 -1 1 .9 7 0.33 92
MF-1 N. America (52.0°N, 83.5°W) 2 .0 -4 .9 -1 3 .4  to -1 1 .9 0.12 0.014 -1 3 .2 6 0.14 50
MF-2 N. America (58.5°N, 118.0°W) 1 .5-5 .0 -1 3 .0  to -1 1 .4 0.48 <0.001 -1 2 .8 6 0.23 53
MF-3 Asia (59.0°N, 62.0°E) 2 .2 -5 .9 -1 3 .0  to -1 1 .2 0.36 <0.001 -12 .81 0.21 54
MF-4 Asia (59.5°N, 108.5°E) 1 .4-4 .7 -1 3 .4  to -1 2 .2 0.13 0.016 -1 3 .2 3 0.12 44
WS-1 Africa (5.0°N, 27.5°E) 1 .3-4 .6 -1 0 .8  to -8 .4 0.81 <0.001 -1 1 .3 6 0.60 127
WS-2 Australia (25.5°S, 147.5°E) 0 .7 -1 .7 -1 3 .9  to -1 2 .0 0.01 0.171 -1 3 .3 5 0.22 130
SH-1 Africa (26.0°S, 21.5°E) 0 .2 -0 .6 -1 7 .3  to -1 3 .9 0.57 <0.001 -1 7 .9 2 8.34 127
SH-2 Australia (28.0°S, 146.5°E) 0 .3 -0 .8 -1 6 .0  to -1 3 .5 0.4 <0.001 -1 6 .6 3 3.03 130
SH-3 N. America (64.5°N, 104.5°W) 0 .8 -1 .9 -1 6 .0  to -1 4 .1 0.02 0.427 -1 5 .1 0 0.20 34
SH-4 N. America (40.5°N, 117.5°W) 0 .2 -0 .6 -1 4 .0  to -1 2 .2 0.24 <0.001 -12 .21 -2 .3 7 79
SV-1 Africa (9.5°N, 3.0°E) 0 .7 -4 .4 -1 2 .3  to -9 .4 0.79 <0.001 -1 2 .1 0 0.59 128
SV-2 S. America (4.5°S, 41.0°W) 0 .7 -3 .7 -1 1 .4  to -1 0 .0 0.34 <0.001 -1 1 .1 6 0.17 128
GR-1 N. America (36.0°N, 100.5°W) 0 .2 -1 .1 -1 7 .1  to -1 4 .0 0.54 <0.001 -1 6 .6 0 2.44 94
GR-2 N. America (45.5°N, 102.5°W) 0 .2 -1 .3 -1 8 .6  to -1 4 .4 0.66 <0.001 -1 8 .3 7 3.28 72
GR-3 N. America (47.5°N, 117.0°E) 0 .2 -1 .2 -2 1 .8  to -1 4 .3 0.78 <0.001 -2 0 .9 6 6.53 58
GR-4 Asia (49.0°N, 57.5°E) 0 .2 -0 .9 -1 8 .4  to -1 3 .7 0.27 <0.001 -17.11 1.92 64

“Vegetation class occupies more than 80% o f 50 km x 50 km site. EB, evergreen broadieaf; EN, evergreen needieieaf; DN, deciduous needieieaf; DB, 
deciduous broadieaf; ME, mixed forest; SH, shrub; W S, woody savanna; SV, savanna; and GR, grass.

'’Thawed season values only (see section 2.1.3).
“Number o f 8-day composites passing temperature threshold test (see section 2.1.3).

using a MODIS (v.3) 1-km resolution global land cover map 
[Friedl et a l ,  2002]. The sites, located on all continents 
except Antarctica, represented 9 vegetation classes; each 
vegetation class except deciduous needieieaf forest was 
represented by at least two sites (Table 1). For each site, 
we investigated the correlation between SeaWinds radar 
baekseatter (ct°) and MODIS-derived LAI during nonfrozen 
periods from 2000-2002. We also fit a set o f logistical 
curves \Zhang et a l ,  2003, 2004] to the rise and fall o f the 
seasonal baekseatter and LAI to derive the timing o f leaf 
flush and leaf seneseenee, respectively, from each instru
ment time series data.
2.1.1. MODIS Leaf Area Index Data

[9] LAI data for each site were extracted from the 
MOD15A2 8-day composite (v.4), 1-km resolution LAI 
product (ededaae.usgs.gov/modis/modl5a2.asp). LAI val
ues flagged as contaminated by cloud, snow, or aerosols 
[Myneni et a l, 2002] were removed, and the remaining 
values (i.e., those with good quality assessment) were 
linearly interpolated to fill gaps [Zhao et a l ,  2005]. The 
2500 1-km values at each 8-day time step in each 50 km x 
50 km site were averaged to derive a single LAI time series 
for each site.
2.1.2. SeaWinds Backscatter Data

[10] For this investigation we used daily Ku-band baek
seatter measurements from SeaWinds-on-QuikSCAT to 
classify growing season parameters from 2000 to 2002. 
The SeaWinds instrument consists o f a rotating peneil-beam 
antenna, which provides contiguous measirrement swaths of

1400 km (inner beam) and 1800 km (outer beam), eoverage 
of approximately 70% o f the Earth on a daily basis and 90% 
global eoverage every 2 days. At higher latitudes (i.e., 
>40°N) SeaWinds temporal eoverage is improved, often 
allowing for multiple radar baekseatter measurements per 
unit land area per day. The instrument has mean ineidenee 
angles o f 54° (outer beam; W  polarization) and 46° (inner 
beam; HH polarization). The Level 2A “ egg” data product 
has spatial resolution o f approximately 37 x 25 km. The 
SeaWinds radar transmits microwave radiation at 13.4 GHz 
(2.24 cm wavelength) and receives a siufaee baekseatter 
signal w ith a 0.25 dB relative accuracy [King and  
Greenstone, 1999].

[11] Utilizing the L2A data product, we extracted Sea
Winds outer beam radar baekseatter measurements for each 
study site, beginning 1 January 2000 and extending through 
31 December 2002. All daily SeaWinds “ egg” data with 
center locations within a 10-km radius centered over each 
study site were extracted and averaged on an orbit-by-orbit 
basis. Beeause o f its wider swath, SeaWinds outer beam 
data provide improved temporal eoverage (i.e., up to 5 or 
more samples per day at high latitudes) relative to inner 
beam data. The larger ineidenee angle o f the outer beam 
data also provides an increased propagation path through 
the vegetation volume and may, in some instances, increase 
baekseatter sensitivity to vegetation strueture and moisture 
relative to inner beam data. Hardin and Jackson [2003] 
found SeaWinds HH and W  polarization responses to be 
similar in their savanna study. The orbit-by-orbit baekseatter
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values were averaged to the same 8-day intervals as the 
MODIS LAI data using an 8-day windowing seheme. Mean 
baekseatter and baekseatter varianees were eompnted for 
eaeh 8-day interval.
2.1.3. Daily Weather Data

[12] Daily maximum and minimum air temperature data 
were taken from the NASA Data Assimilation Offiee 
(DAO) 3-hour reanalysis data set [Data Assimilation Office, 
2002], and nonlinear spatial smoothing was used to inter
polate the 1° X 1.25° data to eaeh site [Zhao et al., 2005]. 
These data were used to stratify the annual radar time series 
into frozen and thawed seasons, and partienlarly to filter out 
the dynamie baekseatter temporal response to snow and 
landseape freeze/thaw effeets. The onset of fully thawed 
eonditions was determined, through visual inspeetion o f the 
data, to oeenr after seven eonseentive days with mean air 
temperatures greater than 4°C. The end o f the thawed 
season was identified as the first day with mean air temper
atures less than 3°C. To avoid multiple transition dates 
between seasons when average temperatures hovered near 
the threshold, transition dates were required to be at least 
60 days apart. O f the 27 sites, 17 had an identified frozen 
season in whieh the baekseatter signal was masked out. We 
also refer to this thawed period as the growing season, 
though some photosynthesis will oeenr during the freeze- 
thaw transition period, partienlarly for evergreen systems, 
and for dronght-deeidnons systems vegetation ean be dor
mant during some thawed periods.
2.1.4. Site-Level Correlation of Microwave 
Backscatter and LAI

[13] We used linear regression to ealenlate eorrelations 
between the growing season SeaWinds baekseatter (ct°) and 
MODIS LAI data for eaeh site, o f the form

=  a\i + U2i ■ LAIi ( 1)

\ ^ai+bf (2 )

a% ID

SS5.-10

• non-frozen season 0° 
o frozen season o°

—  Fit of Logistical Func. 
 95% Conf. int.

where an  and are the regression parameters for site i. We 
used all 3 years of data in a single eorrelation analysis for 
eaeh site. This analysis retnmed eoeffieients o f determina
tion (R^ and p  value) and values for the two regression 
eoeffieients, a ^  and a2 i, for eaeh site.
2.1.5. Site-Level Phenologlcal Timing Analysis

[14] Following the methodology o f Zhang et al. [2003], 
we fit a enrve o f the form

to the seasonal inerease (spring) and to the seasonal 
deerease (autumn) of eaeh growing season’s ct° and LAI 
data in the multiyear time series, where y, is either ct° or LAI 
for site i, t is day o f year, and c„ and f  are fitting
parameters for site i. For this analysis we further eonstrained 
the logistieal funetion by fixing c, and f  for eaeh site (c, = 
minimum value in 50 days prior to growing season, c, + f  = 
maximum growing season LAI or 32-day mean o f ct° 
values, eentered on the peak value) resulting in a two- 
parameter fit for n, and h,. We determined best fit values for 
these eoeffieients using least squares estimation. We 
determined the midpoints (points o f steepest rise and 
steepest deseent) in the rise ( “ leaf-flush” ) and fall 
(“ seneseenee” ) o f the enrve fits (equation (2)) to the ct°

JanOO MayOO SepOO JanOt MayOt SepOt Jan02

Figure 1. Two-year time series o f  observed 8-day 
eomposite SeaWinds baekseatter ct° (frozen season indi- 
eated by open symbols and thawed season indieated by 
solid symbols) for a single site (DB-2; see Table 1), spring 
and fall enrves fit to the data (see equation (2); solid lines), 
and 95% eonfidenee intervals (dashed lines). Horizontal 
arrows in spring and fall o f eaeh year indieate nneertainty 
around estimates o f phenologieal timing o f midpoint o f rise 
and fall o f baekseatter. See seetion 2.1.5 for methodologieal 
details.

and LAI data (Figure 1). From the 95% eonfidenee intervals 
around these fits, we ealenlated an nneertainty in this 
phenologieal timing (Figure 1).

2.2. Theoretical Backscatter Analysis
[15] Physically based radar baekseatter models are useful 

for eonpling land surface physical properties to baekseatter 
signatures, providing a powerful means for interpretation of 
remote sensing data. The MIMICS model [Ulaby et al., 
1990; Ulaby and Elachi, 1990; McDonald and Ulaby, 1993] 
was used to examine theoretical baekseatter sensitivity to 
leaf area index (LAI), soil moisture, and vegetation moisture 
for selected stmetnral classes of canopies.

[16] For purposes o f modeling microwave baekseatter, 
MIMICS eharaeterizes a vegetation eanopy as a discrete 
random medium consisting o f one or two layers of vegeta
tion over a rough ground surface. The two-layer model is 
often used for deciduous trees and in conifers where a clear 
boundary between the crown and trunk layers ean be 
identified. The top (crown) layer consists o f randomly 
distributed branches and leaves. The bottom (tmnk) layer 
consists of the tree tmnks, usually oriented in a near-vertical 
fashion. The single layer model is generally applied to 
canopies with simpler stmetnres, such as grasslands, shmb- 
lands, and croplands [Ulaby et al., 1990; Ulaby and Elachi, 
1990]. Canopy constituents (leaves, needles, branches, 
tmnks) are considered as discrete seatterers, and are mod
eled by lossy dieleetrie canonical geometries such as discs 
and circular cylinders. These elements are described in 
terms o f their probability distributions in size and orienta
tion, their number density (constituents per unit volume or 
area), and their dieleetrie constant. Soil and vegetation 
dieleetrie properties are estimated by models relating mois
ture parameters to microwave dieleetrie constant. The
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scattering and extinction properties o f individual eompo- 
nents are obtained through application o f scattering models 
appropriate to the sizes o f the seatterer relative to the sensor 
wavelength. The underlying ground is modeled as a homo
geneous dieleetrie half-spaee with a roughness described by 
the RMS surface roughness and eorrelation  length. 
MIMICS has been established as an effective microwave 
baekseatter model for a wide range o f radar sensor config
urations and a variety o f vegetation eanopy arehiteetures, 
including closed and open eanopy struetures [McDonald et 
a l,  1990, 1991; McDonald and Ulaby, 1993; Rignot et a l, 
1994; Way et a l ,  1994].

[17] Foiu stmetnral classes o f vegetation canopies were 
considered in this analysis: (1) grassland, (2) deciduous 
broadieaf trees, and (3) high- and (4) low-biomass needie
ieaf trees. Parameters applied in characterizing broadieaf 
and needieieaf trees were based on parameter development 
in previous studies in whieh MIMICS had been evaluated 
against field data for several eanopy stmetnral classes over a 
variety o f seasonal eonditions, and for a variety of sensor 
eonfigiuations [Way et a l, 1994]. The grassland eanopy was 
modeled as leafy vegetation over a rough ground surface, 
and included no woody constituents [e.g., Du et a l ,  2000]. 
MIMICS was used to simulate baekseatter for the Sea Winds 
outer beam eonfigiuation (14 GHz, W -polarization, 54° 
ineidenee angle) for a variety o f  LAI values, eanopy 
stmetnres, and moisture eonditions.

2.3. Regional Analysis
[18] To further evaluate the relationship between LAI and 

CT°, we acquired multiyear gridded data sets over North 
America. We then evaluated the magnitude of Pearson’s 
eorrelation eoeffieient (R) for 8-day composites o f LAI and 
CT° for eaeh grid cell.
2.3.1. Regional SeaWinds Backscatter Data

[19] We acquired January 2000 through December 2002 
SeaWinds baekseatter data (ct° in dB) for North America 
from the NASA Scatterometer Climate Record Pathfinder 
database maintained at Brigham Young University (http:// 
www.sep.byu.edu). We used the resolution enhaneed Seat- 
terometer Image Reeonstmetion (SIR) images derived from 
the L2A “egg” data, whieh incorporate both ascending and 
descending orbital passes and are a eomposite 4-day aver
age baekseatter time series [Early and Long, 2001]. The SIR 
technique for resolution enhancement was developed spe- 
eifieally for application to satellite-based scatterometer data. 
The technique utilizes multiple satellite passes to improve 
the spatial resolution o f the baekseatter over a temporal 
compositing interval, during whieh siufaee eharaeteristies 
are assumed constant. The temporal compositing interval is 
restricted to support detection o f short-term change; a 
tradeoff is therefore made between imaging time interval 
and spatial resolution. Multiple-pass SIR is not without 
some limitations, however, as temporal variability in target 
eharaeteristies (strueture or dieleetrie constant) during the 
imaging time interval ean cause temporal smearing when 
multiple passes are combined [Early and Long, 1996]. The 
SeaWinds baekseatter data set defined the spatial domain 
and resolution (^4 .5  km) o f the regional analysis (see 
Figure 7 below). We temporally aggregated the 4-day 
baekseatter product into an 8-day product by averaging 
the baekseattered power.

2.3.2. Regional MODIS Leaf Area Index and Land 
Cover Data

[20] Mean 8-day eomposite LAI for 2000-2002 was 
taken from the MODIS MOD15A2 8-day 1-km LAI prod
uct (v.4) (h ttp ://delenn .gsfe .nasa.gov/~ im sw w w /pub/ 
imsweleome/ [Myneni et a l, 2002]). We did not interpolate 
to fill temporal or spatial gaps. For spatial aggregation, the 
central latitude-longitude o f eaeh 1-km MODIS pixel was 
identified within its assoeiated SeaWinds grid cell. To 
reduce atmospheric contamination effeets, we averaged 
only LAI values with a quality control flag <1 (Fpar- 
Lai_QC MODLAND bitfield), obtaining a single LAI value 
for eaeh SeaWinds grid cell and 8-day eomposite during 
2000 - 2002 .

[21] We used the MODIS M 0D12Q1 1-km land cover 
product (v.4) [Friedl et a l, 2002] for North America, using 
the IGBP land cover legend with 18 cover types, to evaluate 
whether patterns in the baekseatter-LAI eorrelation corre
sponded to vegetation cover. The 1-km land cover product 
was reprojeeted and spatially composited to the SeaWinds 
grid (~"4.5 km), by identifying the dominant vegetation 
class in eaeh grid cell and recording the fraction o f the grid 
cell occupied by that dominant class. Only grid cells with an 
assessment eonfidenee >50 and with quality control <  1 
(Land Cover Type l Assessment Mandatory QA bitfield) 
were included in this reprojeetion.
2.3.3. Regional Daily Weather Data

[22] To screen out frozen season data, we generated a 
temperature mask (see seetion 2.1.3) using the European 
Centre for Medium-range Weather Forecasting ERA-40 
temperature fields for January 2000 through August 2002 
(http://www.eemwf.int/produets/data/arehive/). The 6-hourly 
temperature data were averaged to daily means, reprojeeted 
and spatially disaggregated to the same grid as the Sea
Winds data by two-dimensional linear interpolation. This 
gridded daily temperature time series was then used to 
screen non-grow ing season periods, as in seetion 2.1.3. 
All LAI and SeaWinds data after August 2002 were 
excluded from the analysis, as we did not have ERA-40 
temperature data to determine the end o f the 2002 growing 
season.
2.3.4. Grid Cell Correlation of Microwave Backscatter 
and LAI

[23] We calculated linear eorrelations between the grow
ing season SeaWinds baekseatter, ct°, and MODIS LAI data 
for eaeh grid cell, j . We used all 3 years o f data in a single 
eorrelation analysis for eaeh site. This analysis returned 
eorrelation eoeffieients (R) for eaeh grid cell; these were 
mapped to look for coherent spatial pattems that could be 
related to land cover type.

3. Results
3.1. Site Level Results

[24] Across the 27 sites, thawed season LAI values from 
MODIS range from <1 m^ m~^ in grassland and temperate/ 
subtropical shrub sites to >5 m^ m~^ in wet tropical forest 
(all EB sites) year-round and in temperate broadieaf forest 
(both DB sites and the MF-3 site) during peak growing 
season (Table 1). Growing season SeaWinds baekseatter 
values ranged from less than — 18 dB in three grassland sites 
to more than — 9 dB year-round in all wet tropical forest
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Figure 2. (a) Scatterplot o f  growing season 8-day 
composite ct° versus 8-day eomposite LAI for all sites and 
all years, aggregated by vegetation class, (b) Linear 
regression lines (see equation (1) in text) for eaeh site that 
had a regressionp  value less than 0.05 (i.e., excluding sites 
EB-1, EB-2, EB-3, EB-4, WS-2, and SH-3). See Table 1 for 
site locations and site-level linear regression statistics. Note 
that all sites are 50 km x 50 km.

(EB) sites and during the peak growing season at the WS-1 
site. There was an overall pattem across all sites o f eo- 
oeeurrenee of low LAI correlating with low baekseatter and 
high LAI with high baekseatter; although the relationship 
was not linear across the entire domain (Figure 2a), it was 
generally linear for individual sites.

[25] Coefficients o f determination between MODIS LAI 
and Sea Winds baekseatter for the 27 sites ranged from 0.81 
to 0.0; twenty-one o f the sites had significant relationships 
between baekseatter and LAI (p < 0.05), but only eight sites 
had values greater than 0.5 (Table 1). Linear relation
ships were strong to moderate (R^ >  0.25) for all savanna, 
deciduous broadieaf, and grassland sites, as well as two 
mixed forest sites (MF-2 and MF-3), two shrub sites (SH-1 
and SH-2), an evergreen needieieaf site (EN-2), and a

woody savanna site (WS-1) (Table 1). Linear relationships 
were weak to nonexistent (R^ < 0.25) for all evergreen 
broadieaf sites, three evergreen needieieaf sites, the decid
uous needieieaf site, as well as two mixed forest sites (MF-1 
and MF-4), two shrub sites (SH 3 and SH-4), and a woody 
savanna site (WS-2) (Table 1).

[26] Grassland and shrub sites with signifieant relation
ships had maximum LAI values less than 1.5; these sites 
generally had strong baekseatter dependence on LAI (re
gression slope greater than about 2 dB per LAI unit) 
(Figure 2b). The savanna, deciduous broadieaf, mixed forest 
sites and the WS-1 site all had a wide range in LAI values 
(minimum LAI generally less than 2, maximum LAI gen
erally greater than 4); these sites all had a weaker baekseat
ter dependence on LAI (regression slope less than about 
0.6 dB per LAI unit) (Figure 2b). Among the 21 sites that 
had a signifieant eorrelation between MODIS LAI and 
SeaWinds baekseatter (p < 0.05; see Table 1), only the 
SH-4 site had a negative slope (equation (1) and Figure 2b), 
but the relationship was weak (R = 0.24).

[27] To evaluate w hether eorrespondenee betw een 
MODIS LAI and SeaWinds baekseatter data were sufficient 
to discriminate either distinct growing season pattems (e.g., 
asymmetries, double peaks, . . . )  or interannual differences 
in growing season dynamies, we used the site-level linear 
regressions (Table 1) to generate multiyear time series of 
simulated baekseatter, with 95% eonfidenee limits, from the 
MODIS LAI 8-day product. We selected 4 herbaceous sites 
and 4 woody sites with strong eorrelations (Figiue 3: GR-1, 
GR-2, GR-3, SV-1, EN-2, DB-2, SH-1, and WS-1). All 
three grassland sites showed marked seasonal and interan
nual variability in radar baekseatter that corresponded to 
variability in LAI. For GR-1, the seasonal radar baekseatter 
curve in 2000 was relatively narrow and symmetric; in 2001 
the baekseatter progression rose high early and then had a 
lower plateau, while in the 2002 baekseatter curve was 
broad and symmetric (Figiue 3a). These basic pattems were 
also captured in the LAI-based estimate o f the baekseatter 
(Figure 3a). The GR-2 site had similar SeaWinds baekseat
ter pattems in 2000 and 2001, but lower values and a less 
symmetric seasonal curve in 2002 (Figure 3b). The LAI- 
based estimate of the baekseatter was less consistent be
tween 2000 and 2001, but did have a lower and less 
symmetric pattem in 2002 (Figure 3b). The GR-3 site had 
a much higher and narrower growing season peak in 
baekseatter in 2002 than 2000 or 2001, and this was 
captured in the LAI-based estimate o f  the baekseatter 
(Figure 3e). The spring-time rise in baekseatter at the SV-1 
site was much more rapid than the rise in the LAI-based 
estimate of the baekseatter in 2000 and 2001, but more 
similar in 2002 (Figure 3d).

[28] For the EN-2 site, the thawed season baekseatter 
signal was much smaller than the signal during winter, but 
there was some difference in the growing season baekseatter 
progression between the 3 years, that also corresponded to 
LAI seasonal and interannual variability (Figure 3e). At the 
DB-2 site, the baekseatter curve in the summers o f 2000 and 
2001 was broad and fiat, while in 2002 it dropped off in late 
August and then had about a 6-week plateau in the autumn. 
The LAI-based estimate o f the baekseatter also had broad 
peaks but did not have the drop in 2002 (Figure 31). The 
SH-1 site had low baekseatter and LAI values. The Mareh-
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Figure 3. Three-year time series of observed 8-day eomposite SeaWinds baekseatter ct° (frozen season 
indieated by open symbols and thawed season indieated by solid symbols) and thawed season baekseatter 
predieted from 8-day eomposite MODIS LAI (solid lines) with 95% eonfidenee interval (dashed lines), 
based on linear regression fits (see Figure 1 and Table 1), for four sites with herbaeeous vegetation: 
(a) GR-1, (b) GR-2, (e) GR-3, and (d) SV-1, and four sites with woody vegetation, (e) EN-2, (f) DB-2, 
(g) SH-1, and (h) WS-1. Note that all sites are 50 km x 50 km.

April peak was small in 2001 in both SeaWinds baekseatter 
and the LAI-based estimate o f the baekseatter (Figiue 3g). 
SeaWinds baekseatter showed a steady inerease from April 
through November 2001 that did not emerge in the LAI- 
based estimate o f the baekseatter (Figure 3g). For the WS-1 
site, both SeaWinds baekseatter and the LAI-based estimate 
o f the baekseatter had broad peaks from April through 
November, but the LAI-based estimate o f the baekseatter 
tended to drop off more during this period than the Sea
Winds baekseatter (Figure 3h).

[29] For the SH-4 and WS-2 sites, there was a signifieant 
phase shift between the MODIS LAI seasonal signal and the 
SeaWinds baekseatter season signal. The SH-4 site is in 
eentral Nevada, USA, and had very low LAI values 
(maximum <0.7) with narrow peaks ( ^ 1 - 2  months) oeeur- 
ring in May and June o f eaeh year (Figure 4a). Sea Winds 
baekseatter for SH-4 had a m ueh broader peak ( 4 -  
6 months) and baekseatter inereased eaeh year as LAI was 
dropping from peak values (Figure 4a). This led to a

negative slope in the assoeiated linear regression relation
ship for these variables (Table 1 and Figure 2b). The WS-2 
site is in eastern Queensland, Australia, and had low to 
moderate LAI values (0 .8-1.7) with a relatively broad peak 
from A pril-June (austral autumn) (Figure 4b). SeaWinds 
baekseatter for WS-2 showed a similar pattem, but led the 
peak in LAI by several months with peak seasonal baek
seatter oeeurring from January-Febraary (Figure 4b) during 
the elimatologieal wet season [Legates and Willmott, 1990]. 
The resulting regression analysis o f this site showed no 
signifieant relationship between SeaWinds baekseatter and 
LAI (Table 1).

[30] The phenologieal timing enrve fit (equation (2), 
seetion 2.1.5) sueeessflilly identified dates for the midpoint 
in the spring green-up and fall seneseenee o f both SeaWinds 
baekseatter and MODIS LAI for all 3 years at eight sites 
(Figure 5), and for none o f the growing seasons at five sites 
(all EB sites and SH-2). At five sites, the enrve fitting 
routine failed to eonverge for one or more, but not all.
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Figure 4. Three-year time series o f MODIS LAI and 
SeaWinds baekseatter for the 50 km x 50 km (a) SH-4 and 
(b) WS-2 sites. Vertieal bars are weekly preeipitation from 
the nearest WMO-reporting weather station (50 km away 
for SH-4 and 110 km away for WS-2). These two sites show 
a distinet phase shift between the two signals, while the 
other 25 sites do not.

seasons for both SeaWinds baekseatter and MODIS LAI 
(GR-2, SH-3, SH-4, SV-2, and WS-2). Finally, for nine 
sites, the enrve fitting routine failed to eonverge for one or 
more, but not all, seasons with the SeaWinds baekseatter 
data, but identified dates for all seasons with MODIS LAI 
data (DN-I, EN-I, EN-3, EN-4, GR-I, GR-4, M F-I, MF-4, 
and SH-I). Overall, the enrve fitting was more sueeessftil 
w ith LAI data than w ith baekseatter data. Sites with 
sueeessftil fits generally had both a relatively high maxi
mum LAI and a moderate to strong eorrelation between 
SeaWinds baekseatter and MODIS LAI (Table I).

[3i] At the eight sites for whieh the phenologieal timing 
enrve fit always identified a date, the timing o f the fall 
seneseenee was generally similar for both Sea Winds baek

seatter and MODIS LAI (Figure 5). However, the timing of 
the spring response o f baekseatter and LAI was approxi
mately equivalent in all 3 years for only one site (WS-I); for 
the other sites the SeaWinds baekseatter signal generally 
rose earlier than the MODIS LAI (Figure 5). At the other 14 
sites where some but not all dates were identified, the timing 
of spring leaf-out derived from SeaWinds baekseatter data 
oeeurred earlier more often than the timing identified from 
MODIS LAI. No elear pattem emerged in the eomparison of 
fall seneseenee timing at these 14 sites. In general, there was 
a wider 95% eonfidenee interval for the timing o f the 
midpoint in spring green-up or fall seneseenee for SeaWinds 
baekseatter than for MODIS LAI (Figure 5).

3.2. Theoretical Backscatter Modeling Results
[32] Grassland baekseatter was most sensitive to soil 

moisture when LAI was low (Figure 6a). As leaf moisture 
and LAI inerease, the grass eanopy beeame a more domi
nant eontributor to baekseatter and baekseatter sensitivity to 
soil moisture and to LAI itself diminished. Although baek
seatter was not sensitive to inereasing LAI above about 4 m^ 
m~^, baekseatter sensitivity to leaf moisture was still 
apparent at high values o f LAI.

[33] For eaeh tree eanopy, baekseatter was simulated for 
high and low values o f dieleetrie eonstant (e) o f the woody 
eonstituents (tranks and branehes), representing respeetive 
high and low wood moisture levels (Figure 6b). Dry soil 
eonditions and eonstant values for leaf moisture were 
applied in eaeh ease. The low biomass needieieaf eanopy 
(blaek spruee) exhibits the highest baekseatter sensitivity to 
LAI, and the lowest baekseatter sensitivity to the dieleetrie 
eonstant o f the woody eonstituents. Comparing this to the 
white spruee and poplar eanopy simulations, it is apparent 
that as the amount o f woody biomass inereases, sensitivity 
to LAI deereases while sensitivity to woody eonstituent 
dieleetrie eonstant inereases. As was the ease for the 
grassland eanopy, within a given straetural elass and with 
LAI above about 4 m^ m~^, most baekseatter sensitivity is 
to moistiue ehange in the vegetation (woody or leafy 
eonstituents) rather than to straetural ehanges related direetly 
to inereasing LAI. The differenee in baekseatter behavior 
between the white spruee and balsam poplar eanopies 
demonstrate the sensitivity o f baekseatter to vegetation 
braneh strueture.

3.3. Regional Analysis Results
[34] There were 829,709 land grid eells (^4.5-km  reso

lution) within the North Ameriean domain. Approximately 
91 pereent o f the domain (754,269 grid eells) showed 
sta tistieally  valid  (P < 0.05) re la tionsh ips betw een 
MODIS-derived LAI and SeaWinds baekseatter growing 
season dynamies. Regional variability between MODIS LAI 
and Sea Winds baekseatter dynamies appeared to follow 
general land eover patterns indieated by the MODIS land 
eover elassifieation. There was a reasonably strong eorrela
tion (R > ^0.75) between growing season LAI and ct° 
aeross the eastern and eentral United States, southeastern 
Canada, and the Canadian prairies (Figiue 7a). These 
regions are dominated in the MODIS land eover elassifiea
tion by eropland, deeiduous broadieaf forest, eropland/other 
vegetation mosaie, and mixed forest (Figure 7b). Correla
tions were generally quite low (R < ^0 .4 ) for the moun
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tainous and western United States and Canada, boreal and 
aretie Canada, and most o f northern Mexieo (Figure 7a); 
these regions are dominated by evergreen needieieaf forest, 
elosed and open shrubiand, woody savanna, barren, and 
permanent wetland land eover types (Figiue 7b). Grasslands 
showed intermediate and wider ranging eorrelations (R ^  
0 .1-0 .9) (Figures 7a and 7b).

[35] To evaluate the eorrelation statisties, we reproeessed 
the land eover data to seleet only those 4.5 km grid eells 
having a single dominant land eover in their ^ 2 0  eontrib- 
uting MODIS pixels. We first sereened out those pixels that 
did not pass the land eover quality eontrol in the MODIS 
land eover produet. We then sereened out those pixels that 
had an IGBP land eover quality assessment of less than 50% 
(<35% for mixed forest and erop/natural vegetation mosaie) 
(M. Friedl, Boston University, personal eommunieation). 
We then reprojeeted and aggregated the remaining 1-km 
land eover pixels to the SeaWinds data grid, and set a 
minimum threshold requiring that >50% o f eontributing 
pixels were o f the dominant land eover elass (i.e., we 
exeluded grid eells that had heterogeneous land eover). 
Finally, we sereened out grid eell 8-day LAI eomposites 
that had only 5 or fewer o f the ^ 2 0  potential pixels with 
good LAI values. In some eases, this restrietion meant that 
there were fewer than twenty 8-day pairs o f LAI and ct° data 
over the three growing seasons; in those eases no eorrelation 
was ealenlated. This redueed the domain to 517,686 grid 
eells. We then evaluated the grid eell eorrelations from eaeh 
land eover elass. Cropland, deeiduous broadieaf forest, and 
eropland/natural vegetation mosaie all eover a signifieant 
portion o f North Ameriea and all had mean and median grid 
eell eorrelations between ct° and LAI of about 0.75 (Table 2), 
and most eorrelations were greater than 0.7 (Figure 8). 
Mixed forests had a broad range o f grid eell eorrelations 
(Figure 8) with a mean o f about 0.75 (Table 2). Grassland 
grid eells had more low than high eorrelations (Figure 8), 
with a mean o f about 0.5. Woody savanna, evergreen 
needieieaf, and open shrubiand all had generally low grid 
eell eorrelations between ct° and LAI, with median

values less than 0.3. Several land eover elasses have only 
a small presenee (<1%) in the MODIS land eover elassifi
eation o f North Ameriea: snow/iee, deeiduous needieieaf 
forest, permanent wetland, evergreen broadieaf forest, 
elosed shrubiand, and urban/built-up (Table 2). These grid 
eells generally had low or highly variable eorrelations 
(Figure 8).

[36] For the broadieaf deeiduous elasses (deeiduous 
broadieaf forest, eropland, eropland/natural vegetation 
mosaie, and grassland), higher eorrelations between Sea
Winds baekseatter and MODIS LAI (R > 0.75) were 
eommon for grid eells that had a relatively high growing 
season range in LAI (LAIj^^x ^  LAIj^jj, > 3 m^ m “ ), while 
low eorrelations (R < 0.7) were eommon for grid eells with 
a lower growing season range in LAI (LAI,
T 2 -2 m m

max kAIjYiin
■) (Figure 9).

4. Discussion
[37] Both SeaWinds radar baekseatter and MODIS opti- 

eal/NIR-derived LAI arise from the interaetion o f eleetro- 
magnetie radiation with vegetation-soil medium. However, 
the speefral wavelengths o f these sensors differ by a faetor 
of ^  10^, and thus their responses to land surfaee biophysies 
are very different. From a land eover-vegetation point of 
view, optieal/NIR radiation interaets primarily with surfaee 
ehemieal eomposition through vibrational and eleetronie 
energy transition proeesses, while mierowave radiation 
interaets more direetly with surfaee straetural properties 
through the dieleetrie properties o f  materials [Elachi, 
1987]. The mierowave dieleetrie eonstant is sensitive to 
moleeular polarization and rotation. Sinee water is a polar 
moleeule, the mierowave dieleetrie eonstant is highly re
sponsive to the amount and state o f water in the material. 
Optieal/NIR sensors are sensitive to photosynthetie leaf area 
assoeiated with vegetation eolor, while radar sensors are 
sensitive to eanopy strueture (e.g., biomass, leaf and stem 
size, orientation and density) and moisture, and to soil 
roughness and wetness.

9 of 14



D17302 FROLKING ET AL.: VEGETATION GROWING SEASON SIGNAL SEEN BY SEAWINDS D17302

- (A) Grassland

-10  —

Leaf Mg = 0.8Moist Soil

jg - 1 4 -

Dry Soil
Leaf Mg = 0.7 J-16 —

-18
-8 — I— I— I— I— I— I— I— I— I— I— I— I— I— I— I— I— I— I— I— I— I— I— I— I— I— I— I— I— I— I— I— I— I— r

~ (B) Broadieaf and Needieieaf Irees Black Spruce

-10  —

White Spruce ]

■or  -12

High Low

I /  Balsam Poplar
Black Spruce 
White Spruce 
Balsam Poplar

-18
0 1 2 3 4 5 6 7

C-band backscatter and AVHRR GVI. Seasonal temperate 
forests, grasslands, savannas, and croplands generally had 
covarying signals, while tropical forests had little variabil
ity. Frison and Mougin [1996] also had one site, grassland 
with palms in Argentina, that had a significant phase shift 
between the GVI and backscatter signals.

[39] There were no strong pattems in site-level correla
tions when evaluated with respect to longitude, maximum 
growing season LAI, minimum growing season LAI, or 
LAI dynamic range (growing season maximum minus 
minimum). For the northem temperate/boreal region (3 5 - 
65°N) there was a moderate tendency to decreasing corre
lation with increasing latitude; the high-latitude sites were 
predominantly evergreen needieieaf or mixed forests, which 
had lower correlations than deciduous forests or grasslands. 
There was moderate tendency toward increasing correlation 
between backscatter and LAI as the growing season back
scatter range (maximum minus minimum in dB) increased; 
this range was highest for grassland sites (Table 1).

Leaf Area Index

Figure 6. Modeled Ku-band VV-polarized backscatter at 
54° incidence angle for (a) a grassland canopy with 3 cm 
diameter leaves and (b) broadieaf deciduous (balsam 
poplar), high-biomass needieieaf (white spruce) and low- 
biomass needieieaf (black spruce) canopies. Grassland 
backscatter is shown for dry and moist soil conditions and 
for two different leaf water content conditions. Leaf Mg 
equals water content by weight. Results for each tree 
canopy are derived for high and low values of the woody 
component dielectric constant (high e, low e). Canopy 
structural parameters were based on previous multiseason 
modeling analyses [Way et a l,  1994]. Simulations were 
with the MIMICS model [Ulaby et a l ,  1990].

[38] The strong correspondence between SeaWinds back
scatter and MODIS LAI at three grassland sites and at one 
savanna, one deciduous broadieaf, one woody savanna, one 
shrubiand, and one evergreen needieieaf site were similar to 
the correspondence Hardin and Jackson [2003] observed 
between monthly mean SeaWinds backscatter and an 
AVHRR-based NDVI for savanna sites in South America. 
We found that correlations between leaf area and radar 
backscatter were generally stronger for deciduous vegeta
tion sites (i.e., grassland and savanna, deciduous broadieaf 
forest but not deciduous needieieaf forest) than for ever
green vegetation sites (i.e., evergreen broadieaf and needie
ieaf forests). M ixed forest sites were intermediate in 
correlation, and the shrubiand and woody shrubiand site 
correlations were highly variable. Although Frison and 
Mougin [1996] did not quantify correlations, they saw 
similar pattems of variability in correlation between ERS

no data

crop/other

mixed forest

woody sav
closed shrub

open shrub

Figure 7. (a) Pearson’s correlation coefficient (R) between 
growing season 8-day composite MODIS LAI and Sea
Winds Ku band backscatter for January 2000 through 
August 2002 for each ^4.5-km  pixel in the domain. The 
growing season for each pixel for each year was determined 
from the ERA-40 reanalysis temperatures (see section 2.3.3). 
(b) Dominant land cover for each ^ 4 .5 -km pixel in the 
domain, based on the 1-km MODIS land cover product 
M0D12Q1 (v.4), using the IGBP land cover legend (see 
section 2.3.2).
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Table 2. Pearson’s Correlation Coefficient Between cr° and LAI 
Across North America for Grid Cells Dominated by Each 
Vegetation Class

Vegetation Class Grid Cells

R

Median Mean
Standard

Deviation

Cropland 73,075 0.81 0.76 0.15
Deciduous broadieaf 21,230 0.79 0.73 0.16
Crop/natural vegetation mosaic 35,413 0.77 0.74 0.11
Mixed forest 58,091 0.63 0.59 0.18
Evergreen broadieaf 666 0.53 0.46 0.23
Grassland 82,908 0.48 0.46 0.25
Urban/built-up 3,599 0.42 0.41 0.25
Deciduous needieieaf 4 0.30 0.24 0.17
Closed shrubiand 1,402 0.28 0.29 0.16
Woody savanna 9,968 0.27 0.31 0.22
Evergreen needieieaf 99,364 0.26 0.28 0.19
Open shrubiand 126,705 0.24 0.27 0.19
Permanent wetland 111 0.24 0.25 0.15
Barren/sparse vegetation 820 0.18 0.21 0.15
Savanna 3,989 0.16 0.20 0.16
Water 17,763 0.33 0.37 0.25
Unclassified* 240,344 0.45 0.45 0.27

“Unclassified grid ceils had either heterogeneous land cover (no single 
class occupying more than 50% o f the grid ceil) or low land cover 
classification accuracy assessment (see text for details).

[40] Although vegetation eanopies eonsist o f more eom- 
plex stmetnres than have been ineorporated in the theoret- 
ieal baekseatter model (e.g., heterogeneous mixtures of 
vegetation types and speeies, forest nnderstory vegetation), 
MIMICS simulations demonstrate important relationships 
between baekseatter and eanopy leaf area. Model and 
satellite results both had a stronger sensitivity of baekseatter 
to LAI for low LAI grassland sites (Figures 2b and 5a), 
while sensitivities were weaker for forest landseapes 
(Figures 2a and 5a). Blaek spraee simulations had high 
sensitivity to LAI at low LAI values, but blaek spraee 
needles typieally have a ^10-year retention time [Horn and 
Oechel, 1983] so aetnal blaek spraee seasonal LAI variabil
ity is quite low. This is eonsistent with SeaWinds observa
tions of relatively low growing season variability (^1  dB) 
in evergreen needieieaf forest baekseatter.

[41] For sites with sparse vegetation (arid sites, but 
perhaps also eold, high-latitnde sites), the baekseatter signal 
may be driven as mueh or more by ehanges in soil moisture 
as by ehanges in vegetation eanopy biomass [e.g., Wagner 
and Scipal, 2000; Wagner et al., 1999a; Woodhouse and 
Hoekman, 2000]. For example, in the dry landseapes o f the 
Sahel, Magagi and Kerr [1997] eombined optieal (AVHRR)

1 1 1 1
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Figure 8. Histogram o f Pearson’s eorrelation eoeffieients (R) between growing season 8-day eomposite 
MODIS LAI and SeaWinds baekseatter for January 2000 through August 2002, for eaeh land eover type 
(see Figure 6). The histograms are normalized to give the fraetion o f total grid eells in eaeh vegetation 
type for eaeh R bin. In this analysis, we have inelnded only those ^4.5-km  pixels in whieh the dominant 
land eover oeenpies more than 50% o f the pixel (see text). In all eases, eorrelations greater than 0.2 are 
signifieant at least to p  < 0.05.
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Figure 9. Two-dimensional histogram o f correlations 
between MODIS-derived LAI and SeaWinds Ku-band 
baekseatter for growing seasons o f 2000-2002. Grid eells 
are binned by range in LAI (maximum minus minimum 
during the three growing seasons, with bins of 0.5 m^ m “ )̂ 
and by Pearson’s eorrelation eoeffieient (R, with bins of 
0.05). The shading represents the number o f grid eells that 
bad a particular combination o f LAI range and eorrelation, 
with dark shades indicating a high frequency o f oeeurrenee 
and light shades a low frequency. Grid eells with high 
eorrelation have a large LAI range, while grid eells with 
moderate to low eorrelation have a smaller LAI range.

and mierowave (ERS C-band scatterometer) data to model 
the effect of vegetation on baekseatter for soil moisture 
rebievals. Vegetation in the region is a mix o f natural and 
agricultural (savanna, shrubiand, millet, and fallow) and 
never completely covers the soil. They concluded that for 
ineidenee angles o f 40-46°, vegetation and soil contribu
tions to the baekseatter were comparable during the wet 
season when the vegetation was at maximum biomass. Our 
MIMICS simulations also showed sbong baekseatter sensi
tivity to soil moisture at low LAI for nonwoody vegetation 
(Figure 5a). Soil moisture effeets could be responsible for 
some o f the seasonality observed at sites and in regions with 
low LAI. The observed phase shift between LAI and 
baekseatter peaks at two dry sites (SH-4 and WS-2 in 
Figure 4), may be due differences in the seasonal dynamies 
o f soil moisture, vegetation moisture, and the eanopy LAI. 
A counterargument to that explanation is that the observed 
seasonal baekseatter signal is an inerease that is sustained 
for several months; if  soils are relatively wet for months, 
vegetation generally will grow and LAI dynamies should 
reflect this.

[42] Although there was variability in both baekseatter 
and LAI for the evergreen broadieaf forest sites (tropical 
rain forests), there was no eorrelation between the two 
signals. Seasonal LAI variability for these sites was gener
ally small (i.e., ±1 LAI unit) relative to mean LAI values 
(^ 5  m^ m~^). Baekseatter seasonal variability was also 
smaller (^1  dB) for evergreen broadieaf forests than most

other sites, while baekseatter itself (generally —8 to —9 dB) 
was higher than all other vegetation types (generally —10 to 
—20 dB). Woodhouse et al. [1999] saw seasonal variation in 
ERS C-band baekseatter over 10 months for a single 
tropical rain forest site in Guyana, which they correlated 
to local preeipitation. However, the seasonal baekseatter 
variation was only 0.4 dB, and with only a single site 
analyzed, there was no indication if  this pattem would be 
detectable at larger scales.

[43] Extracting regional-scale phenologieal timing (spring 
leaf flush and fall seneseenee) has been done with optieal 
remote sensing for boreal and temperate forests [e.g., Zhang 
et al., 2003, 2004; Jenkins et al., 2002; White et al., 1997] 
and for wet-dry seasonal landseapes [e.g., Davenport and 
Nicholson, 1993]. We are not aware o f  any previous 
attempts to assess seasonal vegetation phenology with 
mierowave baekseatter data. The earlier onset o f the in
erease in baekseatter relative to LAI at many sites (Figure 5) 
implies that the springtime baekseatter signal is responding 
to a different eharaeteristie o f the land surfaee than the 
optieal signal. On the basis o f the MIMICS simulations, 
the observed earlier springtime rise in baekseatter relative to 
the rise in LAI in woody vegetation may be caused by a 
springtime inerease in the dieleetrie eonstant o f tranks and 
branches, driven by an inerease in the assoeiated liquid water 
content o f these components that precedes leafout. For 
nonwoody vegetation, this effect could be assoeiated with a 
springtime inerease in surfaee moisture preceding signifieant 
vegetative growth. The strong link between available liquid 
water and vegetative growth makes it difficult, and perhaps 
less important, to separate the two effeets. Soil moisture, 
however, ean vary on short timeseales relative to the vege
tation eanopy [e.g., Wagner and Scipal, 2000]. Furthermore, 
vegetation dieleetrie has been observed to inerease substan
tially shortly after rainfall events [McDonald et al., 1999, 
2002]. Thus it may be that under some eonditions short-term 
changes driven by episodic preeipitation (e.g., convective 
storms) will influence baekseatter variability but not LAI. 
This, along with freeze-tbaw sensitivity o f the radar baek
seatter, may aeeount for the wider eonfidenee intervals for 
SeaWinds phenologieal timing, particularly for temperate/ 
boreal forest sites (Figure 5).

[44] In the regional analysis, deeiduous broadieaf vege
tation grid eells that have a signifieant range in LAI over the 
growing season (crops, deeiduous trees, erop/otber mosaie, 
some grasslands) consistently have good eorrelations be
tween growing season LAI and baekseatter time series, 
implying that baekseatter responds to growing season 
eanopy dynamies of these vegetation types in a predictable 
and robust way. As the landseape becomes more evergreen 
(mixed and needieieaf forests in the north and west; 
subtropical vegetation along the Gulf coast) or more arid 
(open shrubiand, arid grassland, and barren land in the west 
and southwest) the eorrelations drop quickly to R < 0.4. For 
these regions, either the seasonal variability in the signal 
(LAI or baekseatter) is not large relative to higher frequency 
variability (perhaps beeause o f moisture variability for 
SeaWinds and atmospheric variability for MODIS), or the 
seasonal signals are not in phase. However, Frolking et al. 
[2005] found that strong eorrelations for 10^-10^ km^ 
regions of semiarid grasslands in southern Alberta, eastern 
Colorado, and the western Dakotas, was due to growing
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season LAI and backscatter covarying intcrannually, driven 
by intcrannual variability in precipitation.

5. Conclusions
[45] Site-level and eontinental-seale analyses o f Sea

Winds radar baekseatter and MODIS LAI data for nonfro
zen periods from 2000 to 2002 have demonstrated that 
SeaWinds baekseatter responds to growing season eanopy 
dynamies in a manner often similar, but not identical, to the 
response o f LAI derived from the MODIS optieal/NIR 
instrument. Both data sets show a elear growing season 
signal for most deeiduous broadieaf vegetation. Several 
lines o f evidence support this eonelusion:

[46] 1. The growing season SeaWinds baekseatter and 
MODIS LAI time series (2000-2002) for 50 km x 50 km 
sites with seasonally deeiduous broadieaf vegetation were 
signifieantly correlated for sites around the world (R^ ^  
0.25-0.82; Table 1 and Figure 3).

[47] 2. There were large, spatially coherent pattems in the 
eorrelation between thawed season baekseatter and LAI 
aeross North Ameriea, and these were very similar to spatial 
pattems of MODIS-derived land eover (Figure 7).

[48] 3. Forward modeling o f W -polarized 14 GHz mi
erowave baekseatter for several vegetation types with a 
range o f LAI values shows that observed pattems o f Sea
Winds baekseatter response to growing season eanopy 
dynamies are generally eonsistent with seattering theory 
(Figures 2 and 6).

[49] 4. Phenologieal eurve-fitting to SeaWinds baekseat
ter and MODIS LAI time series had similar degrees of 
success. The specified onset o f the growing season are 
generally oeeurred earlier for the SeaWinds instmment than 
the MODIS instmment (Figure 5). This may be assoeiated 
with a general wetting o f soil and woody tissues, whieh 
generates a baekseatter response, before signifieant foliar 
growth, whieh generates a MODIS LAI response.

[50] 5. In addition, Frolking et al. [2005] found similar 
spatial and temporal pattems in interannual variability 
(2000-2004) o f m id-grow ing season SeaWinds baekseat
ter and MODIS LAI aeross North Ameriea; grasslands of 
the westem Great Plains had the largest variability and that 
variability was eonsistent with variability in preeipitation.

[51] Optieal/NIR and mierowave remote sensing instm- 
ments are sensitive to somewhat different, though often 
related, surfaee eharaeteristies, and therefore do not detect 
identical dynamies in vegetation/surfaee seasonality. The 
standard view o f vegetation phenology is the seasonal 
trajectory o f photo synthetie biomass (i.e., LAI). The sea
sonality o f the surfaee eharaeteristies that influenee miero
wave baekseatter (eanopy straeture and mass and the 
amount and phase o f water in the vegetation and soil) often 
parallels LAI seasonality, and reveals different, but poten
tially complimentary information about the phenology 
signal.

[52] Optieal/NIR and mierowave remote sensing provide 
completely independent measures o f vegetation/land surfaee 
and its seasonal dynamies. Active mierowave remote sens
ing is less compromised by variability in the atmosphere 
(e.g., clouds, smoke and haze {Vermote et a l ,  2002; Friedl 
et al., 2002; Zhao et a l,  2005]), and has higher temporal 
resolution. Optieal/NIR remote sensing is less compromised

by short-term variability in surfaee moisture content, and 
has higher spatial resolution. Identifying large, spatially 
coherent regions with high eorrelation in the seasonality 
of eoineident MODIS and SeaWinds remote sensing obser
vations indieate regions where the surfaee properties eovary, 
inereasing eonfidenee in the interpretation o f both data sets. 
Large, spatially coherent regions with low eorrelation invite 
further analysis. In some eases (e.g., evergreen broadieaf 
vegetation), neither instrument detects mueh seasonality, 
and the lack o f eorrelation is to be expected, as the high 
frequency variability o f  eaeh instrument has different 
causes. In eases where both instruments detect seasonality, 
they are both measuring a real variability in surfaee ehar
aeteristies, and it needs to be understood why these ehar
aeteristies do not eovary. A more complete picture o f the 
phenology o f the land surfaee may be found through a 
eombined analysis of the optieal/NIR and mierowave data.
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Abstract

Phenology, or the seasonality of recurring biological events such as vegetation canopy
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development and senescence, is a primary constraint on global carbon, water and energy 
cycles. We analyzed multiseason Ku-band radar backscatter measurements from the 
SeaWinds-on-QuikSCAT scatterometer to determine canopy phenology and growing 
season vegetation dynamics from 2000 to 2002 at 27 sites representing major global land 
cover classes and regionally across most of North America. We compared these results 
with similar information derived from the MODIS leaf area index (LAI) data product 
(MOD-15A2). In site-level linear regression analysis, the correspondence between radar 
backscatter and LAI was significant (p < 0.05) at most but not all sites and was generally 
higher (R2 > 0.5) for sites with relatively low LAI or where the seasonal range in LAI was 
large (e.g., >3 m^ m~2). The SeaWinds instrument also detected generally earlier onset of 
vegetation canopy growth in spring than the optical/near-infrared (NIR) based LAI 
measurements from MODIS, though the timing of canopy senescence and the end of the 
growing season were more similar. Over North America, the correlation between the two 
time series was stratified largely by land cover class, with higher correlations (R ~ 0.7- 
0.9) for most cropland, deciduous broadieaf forest, crop/natural vegetation mosaic land 
cover, and some grassland. Lower correlations were observed for open shrubiand and 
evergreen needieieaf forest. Overall, the results indicate that SeaWinds backscatter is 
sensitive to growing season canopy dynamics across a range of broadieaf vegetation types 
and provides a quantitative view that is independent of optieal/NIR remote sensing 
instruments.
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