18 research outputs found
Corporate Citizenship: Structuring the Research Field
Corporate citizenship, which is firms’ societal engagement beyond customer and shareholder interests, is a prominent topic in management practice and has led to extensive research. This increased interest resulted in a complex and fragmented scholarly literature. In order to structure and map the field quantitatively, we conducted a temporal analysis of publications and citations, an analysis of the productivity of involved disciplines, an analysis of the productivity of publication forms including journal impact factors, an author productivity and citation analysis, a co-author analysis, an article citation analysis, an article co-citation analysis, and a keyword co-occurrence analysis. Results of these bibliometric analyses show that corporate citizenship research seems to have been in a phase of stagnation since 2014 and shows a rather low degree of interdisciplinarity. Papers are predominantly published in high impact journals. Authors show little collaboration with other researchers. Current research relates to other business ethics topics, addresses philosophical foundations, and starts to relate to human resource management and organization studies
How Will We Dine? Prospective Shifts in International Haute Cuisine and Innovation beyond Kitchen and Plate
Haute cuisine, the cooking style for fine dining at gourmet restaurants, has changed over the last decades and can be expected to evolve in the upcoming years. To engage in foresight, the purpose of this study is to identify a plausible future trend scenario for the haute cuisine sector within the next five to ten years, based on today’s chefs’ views. To achieve this goal, an international, two-stage Delphi study was conducted. The derived scenario suggests that the coronavirus disease 2019 (COVID-19) pandemic will lead to significant restaurant bankruptcies and will raise creativity and innovation among the remaining ones. It is expected that haute cuisine tourism will grow and that menu prices will differ for customer segments. More haute cuisine restaurants will open in Asia and America. Local food will remain a major trend and will be complemented by insect as well as plant-based proteins and sophisticated nonalcoholic food pairings. Restaurant design and the use of scents will become more relevant. Also, private dining and fine dining at home will become more important. The scenario also includes negative projections. These findings can serve as a research agenda for future research in haute cuisine, including the extension of the innovation lens towards the restaurant and the business model. Practical implications include the necessity for haute cuisine restaurants to innovate to cope with increasing competition in several regions. Customers should be seen as co-creators of the value of haute cuisine
Genomic Exploration of Distinct Molecular Phenotypes Steering Temozolomide Resistance Development in Patient-Derived Glioblastoma Cells
Chemotherapy using temozolomide is the standard treatment for patients with glioblastoma. Despite treatment, prognosis is still poor largely due to the emergence of temozolomide resistance. This resistance is closely linked to the widely recognized inter- and intra-tumoral heterogeneity in glioblastoma, although the underlying mechanisms are not yet fully understood. To induce temozolomide resistance, we subjected 21 patient-derived glioblastoma cell cultures to Temozolomide treatment for a period of up to 90 days. Prior to treatment, the cells’ molecular characteristics were analyzed using bulk RNA sequencing. Additionally, we performed single-cell RNA sequencing on four of the cell cultures to track the evolution of temozolomide resistance. The induced temozolomide resistance was associated with two distinct phenotypic behaviors, classified as “adaptive” (ADA) or “non-adaptive” (N-ADA) to temozolomide. The ADA phenotype displayed neurodevelopmental and metabolic gene signatures, whereas the N-ADA phenotype expressed genes related to cell cycle regulation, DNA repair, and protein synthesis. Single-cell RNA sequencing revealed that in ADA cell cultures, one or more subpopulations emerged as dominant in the resistant samples, whereas N-ADA cell cultures remained relatively stable. The adaptability and heterogeneity of glioblastoma cells play pivotal roles in temozolomide treatment and contribute to the tumor’s ability to survive. Depending on the tumor’s adaptability potential, subpopulations with acquired resistance mechanisms may arise.</p
Ex vivo drug sensitivity screening predicts response to temozolomide in glioblastoma patients and identifies candidate biomarkers
Background: Patient-derived glioma stem-like cells (GSCs) have become the gold-standard in neuro-oncological research; however, it remains to be established whether loss of in situ microenvironment affects the clinically-predictive value of this model. We implemented a GSC monolayer system to investigate in situ-in vitro molecular correspondence and the relationship between in vitro and patient response to temozolomide (TMZ). Methods: DNA/RNA-sequencing was performed on 56 glioblastoma tissues and 19 derived GSC cultures. Sensitivity to TMZ was screened across 66 GSC cultures. Viability readouts were related to clinical parameters of corresponding patients and whole-transcriptome data. Results: Tumour DNA and RNA sequences revealed strong similarity to corresponding GSCs despite loss of neuronal and immune interactions. In vitro TMZ screening yielded three response categories which significantly correlated with patient survival, therewith providing more specific prediction than the binary MGMT marker. Transcriptome analysis identified 121 genes related to TMZ sensitivity of which 21were validated in external datasets. Conclusion:GSCs retain patient-unique hallmark gene expressions despite loss of their natural environment. Drug screening using GSCs predicted patient response to TMZ more specifically than MGMT status, while transcriptome analysis identified potential biomarkers for this response. GSC drug screening therefore provides a tool to improve drug development and precision medicine for glioblastoma.</p
Mitochondrial physiology
As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery
Mitochondrial physiology
As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery
Traces of trauma – a multivariate pattern analysis of childhood trauma, brain structure and clinical phenotypes
Background: Childhood trauma (CT) is a major yet elusive psychiatric risk factor, whose multidimensional conceptualization and heterogeneous effects on brain morphology might demand advanced mathematical modeling. Therefore, we present an unsupervised machine learning approach to characterize the clinical and neuroanatomical complexity of CT in a larger, transdiagnostic context. Methods: We used a multicenter European cohort of 1076 female and male individuals (discovery: n = 649; replication: n = 427) comprising young, minimally medicated patients with clinical high-risk states for psychosis; patients with recent-onset depression or psychosis; and healthy volunteers. We employed multivariate sparse partial least squares analysis to detect parsimonious associations between combinations of items from the Childhood Trauma Questionnaire and gray matter volume and tested their generalizability via nested cross-validation as well as via external validation. We investigated the associations of these CT signatures with state (functioning, depressivity, quality of life), trait (personality), and sociodemographic levels. Results: We discovered signatures of age-dependent sexual abuse and sex-dependent physical and sexual abuse, as well as emotional trauma, which projected onto gray matter volume patterns in prefronto-cerebellar, limbic, and sensory networks. These signatures were associated with predominantly impaired clinical state- and trait-level phenotypes, while pointing toward an interaction between sexual abuse, age, urbanicity, and education. We validated the clinical profiles for all three CT signatures in the replication sample. Conclusions: Our results suggest distinct multilayered associations between partially age- and sex-dependent patterns of CT, distributed neuroanatomical networks, and clinical profiles. Hence, our study highlights how machine learning approaches can shape future, more fine-grained CT research
The Digitalization of Motion Picture Production and Its Value Chain Implications
Technological change and development have been ongoing in the motion picture industry since its beginnings some 125 years ago. What further advancements of digitalization can be expected over the next decade and what are its implications for the industry’s value chain? To answer this question, we conducted an international two-stage Delphi study. The results suggested a more frequent use of smartphones as cameras, the emergence of full digital film sets and digital star avatars, as well as advancements in VR-based and interactive movies. The findings imply challenges for traditional players in the motion picture value chain. Production technology becomes both simpler and more complex, leading to the threat of new entrants
Actinomyces spp. Prosthetic Vascular Graft Infection (PVGI): A Multicenter Case-Series and Narrative Review of the Literature
Background: Actinomycosis represents a challenging and under-reported complication of vascular surgery. Optimal management of Actinomyces spp. prosthetic vascular graft infection (PVGI) is highly uncertain because of the paucity of reports on this disease. Methods: We conducted a retrospective case-series of Actinomyces-PVGI that occurred in the last five years in two major university hospitals in northern Italy. We searched for previously published cases in the scientific literature. Results: We report five original cases of Actinomyces spp. prosthetic vascular graft infection following aortic aneurysm repair. Our literature review retrieved eight similar cases. Most patients were immunocompetent males. Most infections were polymicrobial (11/13 cases), with a prevalence of A. odontolyticus involvement (3/13 cases were associated with. Salmonella spp. infection). All cases had a late presentation (>= 4 months from graft placement), with 61% associated with an aorto-enteric fistula. All patients received antibiotic therapy, but the duration was highly heterogeneous (from two weeks to life-long antibiotics). The patients without surgical revision experienced septic recurrences (2/13), permanent dysfunction (1/13), or a fatal outcome (2/13), while of the remainder who underwent vascular graft explant, six recovered completely and one developed a periprosthetic abscess. In two cases follow-up was not available. Conclusions: This case-series aims to raise the diagnostic suspicion and to describe the current management of Actinomyces-PVGIs. We highlight a high heterogeneity in antibiotic duration, choice of the antibiotic regimen, and surgical management. Higher reporting rate is advisable to produce better evidence and optimize management of this rare complication of vascular surgery
Genomic exploration of distinct molecular phenotypes steering temozolomide resistance development in patient-derived glioblastoma cells
Chemotherapy using temozolomide is the standard treatment for patients with glioblastoma. Despite treatment, prognosis is still poor largely due to the emergence of temozolomide resistance. This resistance is closely linked to the widely recognized inter- and intra-tumoral heterogeneity in glioblastoma, although the underlying mechanisms are not yet fully understood. To induce temozolomide resistance, we subjected 21 patient-derived glioblastoma cell cultures to Temozolomide treatment for a period of up to 90 days. Prior to treatment, the cells' molecular characteristics were analyzed using bulk RNA sequencing. Additionally, we performed single-cell RNA sequencing on four of the cell cultures to track the evolution of temozolomide resistance. The induced temozolomide resistance was associated with two distinct phenotypic behaviors, classified as "adaptive" (ADA) or "non-adaptive" (N-ADA) to temozolomide. The ADA phenotype displayed neurodevelopmental and metabolic gene signatures, whereas the N-ADA phenotype expressed genes related to cell cycle regulation, DNA repair, and protein synthesis. Single-cell RNA sequencing revealed that in ADA cell cultures, one or more subpopulations emerged as dominant in the resistant samples, whereas N-ADA cell cultures remained relatively stable. The adaptability and heterogeneity of glioblastoma cells play pivotal roles in temozolomide treatment and contribute to the tumor's ability to survive. Depending on the tumor's adaptability potential, subpopulations with acquired resistance mechanisms may arise. </p