5 research outputs found

    Endocannabinoid System: Chemical Characteristics and Biological Activity

    No full text
    The endocannabinoid system (eCB) has been studied to identify the molecular structures present in Cannabis sativa. eCB consists of cannabinoid receptors, endogenous ligands, and the associated enzymatic apparatus responsible for maintaining energy homeostasis and cognitive processes. Several physiological effects of cannabinoids are exerted through interactions with various receptors, such as CB1 and CB2 receptors, vanilloid receptors, and the recently discovered G-protein-coupled receptors (GPR55, GPR3, GPR6, GPR12, and GPR19). Anandamide (AEA) and 2-arachidoylglycerol (2-AG), two small lipids derived from arachidonic acid, showed high-affinity binding to both CB1 and CB2 receptors. eCB plays a critical role in chronic pain and mood disorders and has been extensively studied because of its wide therapeutic potential and because it is a promising target for the development of new drugs. Phytocannabinoids and synthetic cannabinoids have shown varied affinities for eCB and are relevant to the treatment of several neurological diseases. This review provides a description of eCB components and discusses how phytocannabinoids and other exogenous compounds may regulate the eCB balance. Furthermore, we show the hypo- or hyperfunctionality of eCB in the body and how eCB is related to chronic pain and mood disorders, even with integrative and complementary health practices (ICHP) harmonizing the eCB

    Role of Arbovirus Infection in Arthritogenic Pain Manifestation—A Systematic Review

    No full text
    The number of publications on the development of arthritic pain after CHIKV infection is increasing; however, there is still a gap in the pathophysiological mechanisms that explain these outcomes. In this review, we conducted a descriptive analysis of the findings of patients to understand their prognosis and to explore therapeutic options. Here, we searched the Cochrane, BVS, PubMed, and Scielo databases using the keywords “arthritis”, “pain”, “arbovirus”, “disease”, “arthritogenic”, and “arthralgia” during the 2000 to 2022 period. Descriptive analyses were conducted to understand the association between CHIKV infection and arthritogenic pain. The present study shows the persistence of acute phase signals for months, making the chronic phase still marked by the presence of arthralgia, often disabling under stimuli, such as temperature variation. CHIKV infection appears to be remarkably similar to rheumatoid arthritis, since both diseases share common symptoms. Once diagnosed, patients are mostly treated with analgesics, nonsteroidal anti-inflammatory drugs (NSAIDs), corticosteroids, and disease modifying anti-rheumatic drugs (DMARD). As there are no prophylactic measures or specific treatments for arboviruses, this study gathered information on the development and manifestations of arthritogenic pain

    Polymorphisms in the CIITA −168A/G (rs3087456) and CIITA +1614G/C (rs4774) may influence severity in multiple sclerosis patients

    No full text
    ABSTRACT It is currently unknown how genetic factors may influence the clinical course of multiple sclerosis (MS). Objective: We examined the impact of CIITA polymorphisms −168A/G (rs3087456) and +1614G/C (rs4774) on the risk of disability progression, severity and on responses to first-line immunomodulator treatments. Methods: Genomic DNA was extracted from blood samples. We used ABI3730xl and GeneMapper v.4.0 software to identify genotype variations. All patients were followed up and clinically reassessed at three-month intervals. Disability progression was measured by the Expanded Disability Status Scale and disease severity by the Multiple Sclerosis Spasticity Scale (MSSS). Results: We included 37 men and 80 women. We found no evidence regarding the influence of the single nucleotide polymorphisms studied in the Expanded Disability Status Scale or therapeutic response of the evaluated drugs. We performed a logistic regression analysis with the MSSS and found that a less severe MS course was associated with wild type CIITA −168AA and CIITA +1614GG, as the chance of the patient progressing to MSSS2 and MSSS3 decreased in 61% and 75% with CIITA −168AA and 66% and 75% with CIITA +1614GG, respectively (p < 0.0001). Although less significant, the CIITA +1614 GC also pointed to a less severe MS course and the chance of the patient progressing to MSSS3 decreased 79% (p = 0.015). We also observed that the CIITA −168GG genotype was more frequent in MSSS2 and MSSS3 and had 40% lower odds ratio to becoming more severe MS. Conclusion: These data suggest that CIITA −168AA, CIITA +1614GG and CIITA +1614 GC polymorphisms may be associated with a better MS clinical course. This knowledge may be useful for a better understanding of MS and its therapeutic management

    Molecular mimicry between Zika virus and central nervous system inflammatory demyelinating disorders: the role of NS5 Zika virus epitope and PLP autoantigens

    No full text
    Background Evidence indicates a strong link between Zika virus (ZikV) and neurological complications. Acute myelitis, optic neuritis, polyneuropathy, and encephalomyelitis that mimic inflammatory idiopathic demyelination disorders (IIDD) after ZikV infection have been reported in Brazil. Objective The present study aims to investigate the possible occurrence of molecular mimicry between ZikV antigens and Multiple Sclerosis (MS) autoantigens, the most frequent IIDD of the central nervous system (CNS). Methods A retrospective cohort study with 305 patients admitted due to suspected arbovirus infection in Rio de Janeiro was performed, all subjects were submitted to neurological examination, and a biological sample was collected for serologic and molecular diagnostic. Bioinformatics tools were used to analyze the peptides shared between ZikV antigens and MS autoantigens. Results Of 305 patients, twenty-six were positive for ZikV and 4 presented IDD patterns found in MS cases. Sequence homology comparisons by bioinformatics approach between NS5 ZikV and PLP MS protein revealed a homology of 5/6 consecutive amino acids (CSSVPV/CSAVPV) with 83% identity, deducing a molecular mimicry. Analysis of the 3D structures revealed a similar conformation with alpha helix presentation. Conclusions Molecular mimicry between NS5 Zika virus antigen and PLP MS autoantigens emerge as a possible mechanism for IDD spectrum in genetically susceptible individuals

    Characterisation of microbial attack on archaeological bone

    Get PDF
    As part of an EU funded project to investigate the factors influencing bone preservation in the archaeological record, more than 250 bones from 41 archaeological sites in five countries spanning four climatic regions were studied for diagenetic alteration. Sites were selected to cover a range of environmental conditions and archaeological contexts. Microscopic and physical (mercury intrusion porosimetry) analyses of these bones revealed that the majority (68%) had suffered microbial attack. Furthermore, significant differences were found between animal and human bone in both the state of preservation and the type of microbial attack present. These differences in preservation might result from differences in early taphonomy of the bones. © 2003 Elsevier Science Ltd. All rights reserved
    corecore